{"title":"Low regularity integrators for semilinear parabolic equations with maximum bound principles","authors":"Cao-Kha Doan, Thi-Thao-Phuong Hoang, Lili Ju, Katharina Schratz","doi":"10.1007/s10543-023-00946-2","DOIUrl":null,"url":null,"abstract":"This paper is concerned with conditionally structure-preserving, low regularity time integration methods for a class of semilinear parabolic equations of Allen–Cahn type. Important properties of such equations include maximum bound principle (MBP) and energy dissipation law; for the former, that means the absolute value of the solution is pointwisely bounded for all the time by some constant imposed by appropriate initial and boundary conditions. The model equation is first discretized in space by the central finite difference, then by iteratively using Duhamel’s formula, first- and second-order low regularity integrators (LRIs) are constructed for time discretization of the semi-discrete system. The proposed LRI schemes are proved to preserve the MBP and the energy stability in the discrete sense. Furthermore, their temporal error estimates are also successfully derived under a low regularity requirement that the exact solution of the semi-discrete problem is only assumed to be continuous in time. Numerical results show that the proposed LRI schemes are more accurate and have better convergence rates than classic exponential time differencing schemes, especially when the interfacial parameter approaches zero.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10543-023-00946-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
This paper is concerned with conditionally structure-preserving, low regularity time integration methods for a class of semilinear parabolic equations of Allen–Cahn type. Important properties of such equations include maximum bound principle (MBP) and energy dissipation law; for the former, that means the absolute value of the solution is pointwisely bounded for all the time by some constant imposed by appropriate initial and boundary conditions. The model equation is first discretized in space by the central finite difference, then by iteratively using Duhamel’s formula, first- and second-order low regularity integrators (LRIs) are constructed for time discretization of the semi-discrete system. The proposed LRI schemes are proved to preserve the MBP and the energy stability in the discrete sense. Furthermore, their temporal error estimates are also successfully derived under a low regularity requirement that the exact solution of the semi-discrete problem is only assumed to be continuous in time. Numerical results show that the proposed LRI schemes are more accurate and have better convergence rates than classic exponential time differencing schemes, especially when the interfacial parameter approaches zero.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.