An automatic speech analytics program for digital assessment of stress burden and psychosocial health

Amanda M. Y. Chu, Benson S. Y. Lam, Jenny T. Y. Tsang, Agnes Tiwari, Helina Yuk, Jacky N. L. Chan, Mike K. P. So
{"title":"An automatic speech analytics program for digital assessment of stress burden and psychosocial health","authors":"Amanda M. Y. Chu, Benson S. Y. Lam, Jenny T. Y. Tsang, Agnes Tiwari, Helina Yuk, Jacky N. L. Chan, Mike K. P. So","doi":"10.1038/s44184-023-00036-9","DOIUrl":null,"url":null,"abstract":"The stress burden generated from family caregiving makes caregivers particularly prone to developing psychosocial health issues; however, with early diagnosis and intervention, disease progression and long-term disability can be prevented. We developed an automatic speech analytics program (ASAP) for the detection of psychosocial health issues based on clients’ speech. One hundred Cantonese-speaking family caregivers were recruited with the results suggesting that the ASAP can identify family caregivers with low or high stress burden levels with an accuracy rate of 72%. The findings indicate that digital health technology can be used to assist in the psychosocial health assessment. While the conventional method requires rigorous assessments by specialists with multiple rounds of questioning, the ASAP can provide a cost-effective and immediate initial assessment to identify high levels of stress among family caregivers so they can be referred to social workers and healthcare professionals for further assessments and treatments.","PeriodicalId":74321,"journal":{"name":"Npj mental health research","volume":" ","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44184-023-00036-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npj mental health research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44184-023-00036-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The stress burden generated from family caregiving makes caregivers particularly prone to developing psychosocial health issues; however, with early diagnosis and intervention, disease progression and long-term disability can be prevented. We developed an automatic speech analytics program (ASAP) for the detection of psychosocial health issues based on clients’ speech. One hundred Cantonese-speaking family caregivers were recruited with the results suggesting that the ASAP can identify family caregivers with low or high stress burden levels with an accuracy rate of 72%. The findings indicate that digital health technology can be used to assist in the psychosocial health assessment. While the conventional method requires rigorous assessments by specialists with multiple rounds of questioning, the ASAP can provide a cost-effective and immediate initial assessment to identify high levels of stress among family caregivers so they can be referred to social workers and healthcare professionals for further assessments and treatments.

Abstract Image

用于对压力负担和社会心理健康进行数字化评估的自动语音分析程序
家庭护理所带来的压力负担使护理人员特别容易出现心理健康问题;然而,通过早期诊断和干预,可以预防疾病恶化和长期残疾。我们开发了一个自动语音分析程序(ASAP),用于根据客户的语音检测其心理健康问题。我们招募了 100 位讲广东话的家庭照顾者,结果表明 ASAP 能够识别压力负担水平低或高的家庭照顾者,准确率为 72%。研究结果表明,数字健康技术可用于辅助社会心理健康评估。传统方法需要专家通过多轮提问进行严格评估,而 ASAP 可以提供经济有效的即时初步评估,以确定家庭照顾者的高压力水平,从而将他们转介给社工和医疗保健专业人员进行进一步评估和治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信