Long-Term Infrared Stealth by Sandwich-Like Phase-Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jianwei Jing, Huan Liu, Xiaodong Wang
{"title":"Long-Term Infrared Stealth by Sandwich-Like Phase-Change Composites at Elevated Temperatures via Synergistic Emissivity and Thermal Regulation","authors":"Jianwei Jing,&nbsp;Huan Liu,&nbsp;Xiaodong Wang","doi":"10.1002/adfm.202309269","DOIUrl":null,"url":null,"abstract":"<p>The rapid development of infrared surveillance technologies has attracted great attention for scientists to design advanced functional materials with prominent infrared stealth and thermal camouflage effectiveness. In the current study, a sandwich-like functional composite based on a crosslinked polyimide aerogel, a meso-erythritol (mE)-based phase-change composite, and an MXene film has been developed to achieve long-term thermal camouflage at elevated temperatures. In this composite system, the lower aerogel layer can act as a barrier to insulate heat transfer through its layer-stacking structure under ultralow directional thermal conduction. The introduction of the middle phase-change composite layer ensures that the composite system obtains a dynamical temperature-regulation capability through sensible and latent heat absorption of mE as a phase change material, while the upper MXene layer provides a very low emissivity surface for the system. As a result, the developed composite achieves a significant reduction in the thermal radiation temperature of a high-temperature target. Moreover, the MXene film exhibits good electromagnetic interference shielding effectiveness, making the sandwich-like composite obtain a thermal camouflage capability in various complicated scenarios. This work provides a promising approach for the design of advanced functional materials to realize long-term infrared stealth and thermal camouflage of high-temperature targets in security protection and counter-surveillance.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 2","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202309269","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid development of infrared surveillance technologies has attracted great attention for scientists to design advanced functional materials with prominent infrared stealth and thermal camouflage effectiveness. In the current study, a sandwich-like functional composite based on a crosslinked polyimide aerogel, a meso-erythritol (mE)-based phase-change composite, and an MXene film has been developed to achieve long-term thermal camouflage at elevated temperatures. In this composite system, the lower aerogel layer can act as a barrier to insulate heat transfer through its layer-stacking structure under ultralow directional thermal conduction. The introduction of the middle phase-change composite layer ensures that the composite system obtains a dynamical temperature-regulation capability through sensible and latent heat absorption of mE as a phase change material, while the upper MXene layer provides a very low emissivity surface for the system. As a result, the developed composite achieves a significant reduction in the thermal radiation temperature of a high-temperature target. Moreover, the MXene film exhibits good electromagnetic interference shielding effectiveness, making the sandwich-like composite obtain a thermal camouflage capability in various complicated scenarios. This work provides a promising approach for the design of advanced functional materials to realize long-term infrared stealth and thermal camouflage of high-temperature targets in security protection and counter-surveillance.

Abstract Image

通过协同发射率和热调节,三明治状相变复合材料在高温下实现长期红外隐形
红外监控技术的快速发展引起了科学家们对设计具有突出红外隐身和热伪装效果的先进功能材料的极大关注。本研究开发了一种基于交联聚酰亚胺气凝胶、介赤藓醇(mE)相变复合材料和 MXene 薄膜的三明治状功能复合材料,可在高温下实现长期热伪装。在这种复合材料系统中,下层气凝胶层可以在超低的定向热传导条件下,通过层叠结构起到隔绝热传导的作用。中间相变复合层的引入确保了复合系统通过 mE 作为相变材料的显热和潜热吸收获得动态温度调节能力,而上层 MXene 层则为系统提供了极低的发射率表面。因此,所开发的复合材料可显著降低高温目标的热辐射温度。此外,MXene 薄膜还具有良好的电磁干扰屏蔽效果,使三明治状复合材料在各种复杂情况下都具有热伪装能力。这项工作为设计先进的功能材料,实现安全防护和反侦察领域高温目标的长期红外隐身和热伪装提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
文献相关原料
公司名称
产品信息
麦克林
TEA
麦克林
DMAc
麦克林
ODA
麦克林
PMDA
麦克林
LiF
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信