Alkali Mono-Pnictides: A New Class of Photovoltaic Materials by Element Mutation

Yu Kumagai, Seán R. Kavanagh, Issei Suzuki, Takahisa Omata, Aron Walsh, David O. Scanlon, Haruhiko Morito
{"title":"Alkali Mono-Pnictides: A New Class of Photovoltaic Materials by Element Mutation","authors":"Yu Kumagai, Seán R. Kavanagh, Issei Suzuki, Takahisa Omata, Aron Walsh, David O. Scanlon, Haruhiko Morito","doi":"10.1103/prxenergy.2.043002","DOIUrl":null,"url":null,"abstract":"Selenium (Se) has been studied for over 140 years as the first solid-state solar cell, yet it has only achieved a maximum power conversion efficiency of 6.5%. To improve the efficiency, we propose derivative structures via element mutation. Specifically, we replace Se with Group 15 pnictogens (Pn = P,As,Sb) and fill the interchain space with alkali metals (M = Li,Na,K,Rb,Cs). Our calculations reveal that the band gaps of MPn span the optimal range for solar absorption. We find that NaP, composed of earth-abundant elements, has excellent properties as a solar cell absorber, including a slightly indirect band gap, high optical absorption coefficient just above the absorption onset, light electron and hole effective masses, and ambipolar dopability. However, carrier capture calculations show that P vacancies may limit its photovoltaic performance. Therefore, we propose solutions to reduce P vacancies through chemical potential control. Finally, we present preliminary results of NaP powder sample growth; this reveals a direct band gap of 1.66 eV, close to the predicted value of 1.62 eV. MPn represents a new class of absorber to rival other emerging photovoltaic technologies.2 MoreReceived 20 May 2023Revised 31 July 2023Accepted 14 August 2023DOI:https://doi.org/10.1103/PRXEnergy.2.043002Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasSolar cellsTechniquesDensity functional calculationsFirst-principles calculationsCondensed Matter, Materials & Applied Physics","PeriodicalId":311086,"journal":{"name":"PRX Energy","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PRX Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/prxenergy.2.043002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Selenium (Se) has been studied for over 140 years as the first solid-state solar cell, yet it has only achieved a maximum power conversion efficiency of 6.5%. To improve the efficiency, we propose derivative structures via element mutation. Specifically, we replace Se with Group 15 pnictogens (Pn = P,As,Sb) and fill the interchain space with alkali metals (M = Li,Na,K,Rb,Cs). Our calculations reveal that the band gaps of MPn span the optimal range for solar absorption. We find that NaP, composed of earth-abundant elements, has excellent properties as a solar cell absorber, including a slightly indirect band gap, high optical absorption coefficient just above the absorption onset, light electron and hole effective masses, and ambipolar dopability. However, carrier capture calculations show that P vacancies may limit its photovoltaic performance. Therefore, we propose solutions to reduce P vacancies through chemical potential control. Finally, we present preliminary results of NaP powder sample growth; this reveals a direct band gap of 1.66 eV, close to the predicted value of 1.62 eV. MPn represents a new class of absorber to rival other emerging photovoltaic technologies.2 MoreReceived 20 May 2023Revised 31 July 2023Accepted 14 August 2023DOI:https://doi.org/10.1103/PRXEnergy.2.043002Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical SocietyPhysics Subject Headings (PhySH)Research AreasSolar cellsTechniquesDensity functional calculationsFirst-principles calculationsCondensed Matter, Materials & Applied Physics
碱基单酸盐类:一类元素突变的新型光伏材料
作为第一种固态太阳能电池,硒(Se)已经被研究了140多年,但它只实现了6.5%的最大功率转换效率。为了提高效率,我们通过元素突变提出了衍生结构。具体来说,我们用15族的烟原(Pn = P,As,Sb)代替Se,并用碱金属(M = Li,Na,K,Rb,Cs)填充链间空间。我们的计算表明,MPn的带隙跨越了太阳吸收的最佳范围。我们发现,由地球上丰富的元素组成的NaP作为太阳能电池吸收剂具有优异的性能,包括轻微的间接带隙,高的光学吸收系数,光电子和空穴有效质量,以及双极性可吸收性。然而,载流子捕获计算表明,P空位可能会限制其光伏性能。因此,我们提出了通过化学势控制来减少P空位的解决方案。最后,我们给出了NaP粉末样品生长的初步结果;这表明直接带隙为1.66 eV,接近于预测值1.62 eV。MPn代表了一种新的吸收剂,可以与其他新兴的光伏技术相媲美根据知识共享署名4.0国际许可协议,美国物理学会于2023年8月14日接受doi:https://doi.org/10.1103/PRXEnergy.2.043002Published。这项工作的进一步分发必须保持作者的归属和已发表文章的标题,期刊引用和DOI。发表于美国物理学会物理学科标题(PhySH)研究领域太阳能电池技术密度泛函计算第一性原理计算凝聚态物质材料与应用物理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信