Chemical and biophysical characteristics of protein corona in nanomedicine and its regulatory strategies

IF 1.1 4区 综合性期刊 Q3 MULTIDISCIPLINARY SCIENCES
Wenting Zhang, Mingdi Hu, Rong Cai, Chunying Chen
{"title":"Chemical and biophysical characteristics of protein corona in nanomedicine and its regulatory strategies","authors":"Wenting Zhang, Mingdi Hu, Rong Cai, Chunying Chen","doi":"10.1360/tb-2023-0580","DOIUrl":null,"url":null,"abstract":"Owing to the great potential of nanomaterials (NMs) to treat human diseases and mitigate the toxicity of engineered NMs, the research and development of NMs have geometrically increased. However, the development of technology to synthesize most nanomaterials is still in the early stage, and only a few NMs are approved and clinically used. There is a serious disconnect between industry and research mainly due to the limited understanding of the dynamic and variation in interactions between nanomaterials and biological microenvironments. NMs undergo multifaceted in vivo delivery processes after systemic administration, including circulation in the blood, distribution to tissues and organs, interactions with extracellular matrix components and cells, and intracellular trafficking and secretion. After the administration of NMs, proteins and other biomolecules are deposited on their surfaces via electrostatic, van der Waals, or hydrophobic forces and form protein corona (PC), which is the first in vivo biological barrier encountered by NMs. The formation of PC is a dynamic, competitive, and complex process that is affected by the physicochemical properties of NMs, characteristics of biological fluids, and environmental factors. PC modifies the physicochemical properties of NMs and endows them with new biological identities, which determine the course of various biological events, such as cellular uptake, immune response, biodistribution, clearance, and toxicity. The characterization of PC formation and its influence on NMs and proteins is the first step to thoroughly understanding complex","PeriodicalId":34927,"journal":{"name":"Chinese Science Bulletin-Chinese","volume":"30 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Science Bulletin-Chinese","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1360/tb-2023-0580","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Owing to the great potential of nanomaterials (NMs) to treat human diseases and mitigate the toxicity of engineered NMs, the research and development of NMs have geometrically increased. However, the development of technology to synthesize most nanomaterials is still in the early stage, and only a few NMs are approved and clinically used. There is a serious disconnect between industry and research mainly due to the limited understanding of the dynamic and variation in interactions between nanomaterials and biological microenvironments. NMs undergo multifaceted in vivo delivery processes after systemic administration, including circulation in the blood, distribution to tissues and organs, interactions with extracellular matrix components and cells, and intracellular trafficking and secretion. After the administration of NMs, proteins and other biomolecules are deposited on their surfaces via electrostatic, van der Waals, or hydrophobic forces and form protein corona (PC), which is the first in vivo biological barrier encountered by NMs. The formation of PC is a dynamic, competitive, and complex process that is affected by the physicochemical properties of NMs, characteristics of biological fluids, and environmental factors. PC modifies the physicochemical properties of NMs and endows them with new biological identities, which determine the course of various biological events, such as cellular uptake, immune response, biodistribution, clearance, and toxicity. The characterization of PC formation and its influence on NMs and proteins is the first step to thoroughly understanding complex
纳米医学中蛋白质冠的化学和生物物理特性及其调控策略
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chinese Science Bulletin-Chinese
Chinese Science Bulletin-Chinese MULTIDISCIPLINARY SCIENCES-
CiteScore
2.60
自引率
9.10%
发文量
380
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信