Theoretical study of Cr–Cr bonding in [Cp*2Cr2(CO)2(µ-PMe2)2], [Cp*2Cr2(CO)4(µ-H) (µ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes by QTAIM theory
{"title":"Theoretical study of Cr–Cr bonding in [Cp*2Cr2(CO)2(µ-PMe2)2], [Cp*2Cr2(CO)4(µ-H) (µ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes by QTAIM theory","authors":"Noorhan Ali Hamza, Muhsen Abood Muhsen Al-Ibadi","doi":"10.1007/s11243-023-00559-2","DOIUrl":null,"url":null,"abstract":"<div><p>Chromium–chromium and chromium–ligand bonding interactions existing in the [Cp*<sub>2</sub>Cr<sub>2</sub>(CO)<sub>2</sub>(μ-PMe<sub>2</sub>)<sub>2</sub>], [Cp*<sub>2</sub>Cr<sub>2</sub>(CO)<sub>4</sub>(μ-H) (μ-PMe<sub>2</sub>)], and [Cp*<sub>3</sub>Cr<sub>3</sub>(CO)<sub>3</sub>(μ-S) (μ-PMe<sub>2</sub>)] complexes are studied at DFT level of theory. Several local and integral topological parameters of the electron density such as electron density <i>ρ</i><sub>(b)</sub>, Laplacian ∇<sup>2</sup><i>ρ</i><sub>(b)</sub>, local energy density <i>H</i><sub>(b)</sub>, local kinetic energy density <i>G</i><sub>(b)</sub>, potential energy density <i>V</i><sub>(b)</sub>, <i>ε</i><sub>(b),</sub> and bond localization index (A, B) were evaluated according to QTAIM (quantum theory of atoms in a molecule). The calculated topological parameters are consistent with the relevant transition metal complexes in the literature. The computed data allow comparisons between the topological properties of related but different atom–atom interactions, such as other ligand-bridged Cr–Cr interactions and H-bridged ligand interactions versus S and P ligands. The QTAIM results confirm that the metal atoms bridged by two phosphorus atoms in binuclear complex1 are connected through a localized Cr–Cr bond that implicates little electron density (0.040). In contrast, such bonding was not found in binuclear complexes 2 (bridged by H and P) and trinuclear complex 3 (bridged by S and P). A multicenter 4c–5e, 4c–3e, and 4c–4e interactions are proposed to exist in the bridged parts, Cr(1)–P(1)–Cr(2)–P(2) in complex 1, Cr(1)–H–Cr(2)–P in complex 2, and Cr3–S in complex 3, respectively. Finally, the delocalization indices δ(Cr····O) calculated for the Cr–CO bonds in the three compounds confirm the presence of significant CO to Cr π-back-donation except for Cr(2)–O(2) and Cr(3)–O(1) bonds in complex 3, indicating that there is no π-back-donation.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11243-023-00559-2","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Chromium–chromium and chromium–ligand bonding interactions existing in the [Cp*2Cr2(CO)2(μ-PMe2)2], [Cp*2Cr2(CO)4(μ-H) (μ-PMe2)], and [Cp*3Cr3(CO)3(μ-S) (μ-PMe2)] complexes are studied at DFT level of theory. Several local and integral topological parameters of the electron density such as electron density ρ(b), Laplacian ∇2ρ(b), local energy density H(b), local kinetic energy density G(b), potential energy density V(b), ε(b), and bond localization index (A, B) were evaluated according to QTAIM (quantum theory of atoms in a molecule). The calculated topological parameters are consistent with the relevant transition metal complexes in the literature. The computed data allow comparisons between the topological properties of related but different atom–atom interactions, such as other ligand-bridged Cr–Cr interactions and H-bridged ligand interactions versus S and P ligands. The QTAIM results confirm that the metal atoms bridged by two phosphorus atoms in binuclear complex1 are connected through a localized Cr–Cr bond that implicates little electron density (0.040). In contrast, such bonding was not found in binuclear complexes 2 (bridged by H and P) and trinuclear complex 3 (bridged by S and P). A multicenter 4c–5e, 4c–3e, and 4c–4e interactions are proposed to exist in the bridged parts, Cr(1)–P(1)–Cr(2)–P(2) in complex 1, Cr(1)–H–Cr(2)–P in complex 2, and Cr3–S in complex 3, respectively. Finally, the delocalization indices δ(Cr····O) calculated for the Cr–CO bonds in the three compounds confirm the presence of significant CO to Cr π-back-donation except for Cr(2)–O(2) and Cr(3)–O(1) bonds in complex 3, indicating that there is no π-back-donation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.