{"title":"Noise reduction and characteristic analysis of fluid signal in the jet impact-negative pressure deamination reactor based on wavelet transform","authors":"Xiaodie Huang, Xingzong Zhang, Xingjuan Xie, Facheng Qiu","doi":"10.1002/apj.3001","DOIUrl":null,"url":null,"abstract":"<p>The jet impact-negative pressure deamination reactor (JI-NPDR) is a new type of continuous and efficient deamination equipment. The study of the random flow pattern of porous jet impingement in the reactor under negative pressure conditions is an important issue. In this work, the signal processing method based on wavelet transform is used to analyze the characteristics of random flow signals in the reactor. Meanwhile, an analog similar signal is built and three sets of Gaussian white noise with various signal-to-noise ratios are employed via the MATLAB platform. Based on the adjustment of threshold function, threshold, decomposition level and other parameters of wavelet transform, the noise ratio (SNR) and mean squared error (MSE) are used to evaluate the wavelet denoising effect. And then, the optimal denoising scheme for the obtained signal will be applied in processing the vacuum flow signal collected inside the deamination reactor. Subsequently, the 8-layer wavelet decomposition is investigated by using sym7 as the wavelet basis, soft threshold function, and heursure threshold for signal denoising. Then, the analog signal is fed back through the results of the actual signal denoising, and the number of wavelet decomposition layers is adjusted from 8 to 9 layers to optimize the original wavelet denoising combination. By analyzing the low-frequency and high-frequency parts of the signal spectrum before and after denoising, it was found that wavelet transform can effectively denoise the fluid signal in the reactor.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3001","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The jet impact-negative pressure deamination reactor (JI-NPDR) is a new type of continuous and efficient deamination equipment. The study of the random flow pattern of porous jet impingement in the reactor under negative pressure conditions is an important issue. In this work, the signal processing method based on wavelet transform is used to analyze the characteristics of random flow signals in the reactor. Meanwhile, an analog similar signal is built and three sets of Gaussian white noise with various signal-to-noise ratios are employed via the MATLAB platform. Based on the adjustment of threshold function, threshold, decomposition level and other parameters of wavelet transform, the noise ratio (SNR) and mean squared error (MSE) are used to evaluate the wavelet denoising effect. And then, the optimal denoising scheme for the obtained signal will be applied in processing the vacuum flow signal collected inside the deamination reactor. Subsequently, the 8-layer wavelet decomposition is investigated by using sym7 as the wavelet basis, soft threshold function, and heursure threshold for signal denoising. Then, the analog signal is fed back through the results of the actual signal denoising, and the number of wavelet decomposition layers is adjusted from 8 to 9 layers to optimize the original wavelet denoising combination. By analyzing the low-frequency and high-frequency parts of the signal spectrum before and after denoising, it was found that wavelet transform can effectively denoise the fluid signal in the reactor.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.