Development of a more efficient catalyst for the redox-neutral organocatalytic mitsunobu reaction by DFT-guided catalyst design

Dingguo Song , Changjun Zhang , Yuqi Cheng , Linlin Chen, Jie Lin, Changdi Zheng, Ting Liu, Yuxin Ding, Fei Ling, Weihui Zhong
{"title":"Development of a more efficient catalyst for the redox-neutral organocatalytic mitsunobu reaction by DFT-guided catalyst design","authors":"Dingguo Song ,&nbsp;Changjun Zhang ,&nbsp;Yuqi Cheng ,&nbsp;Linlin Chen,&nbsp;Jie Lin,&nbsp;Changdi Zheng,&nbsp;Ting Liu,&nbsp;Yuxin Ding,&nbsp;Fei Ling,&nbsp;Weihui Zhong","doi":"10.1016/j.gresc.2023.11.002","DOIUrl":null,"url":null,"abstract":"<div><div>The study of a Mitsunobu reaction is an important topic. Denton and co-workers first reported a novel (2-hydroxybenzyl)diphenylphosphine oxide for realizing the catalytic Mitsunobu reaction <em>via</em> a five-membered phosphonium species. However, it is still worth investigating how to improve catalysts with higher efficiency. Guided by computational and experimental studies, we designed a new type of biphenyl-based phosphine oxide that would form a six-membered phosphonium species as a key intermediate to trigger the catalytic Mitsunobu reaction with a lower barrier of the rate-determining step (30.3 ​kcal/mol). DFT calculations revealed that only trans dehydration was participated in our catalytic progress and a strong <em>π</em>-<em>π</em> interaction and small spatial constraint of <strong>TS-V</strong> were crucial for high behavior. This readily accessible, highly stable, easily recyclable and efficient catalyst would boost the catalytic Mitsunobu reaction.</div></div>","PeriodicalId":12794,"journal":{"name":"Green Synthesis and Catalysis","volume":"5 4","pages":"Pages 290-296"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Synthesis and Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666554923000844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The study of a Mitsunobu reaction is an important topic. Denton and co-workers first reported a novel (2-hydroxybenzyl)diphenylphosphine oxide for realizing the catalytic Mitsunobu reaction via a five-membered phosphonium species. However, it is still worth investigating how to improve catalysts with higher efficiency. Guided by computational and experimental studies, we designed a new type of biphenyl-based phosphine oxide that would form a six-membered phosphonium species as a key intermediate to trigger the catalytic Mitsunobu reaction with a lower barrier of the rate-determining step (30.3 ​kcal/mol). DFT calculations revealed that only trans dehydration was participated in our catalytic progress and a strong π-π interaction and small spatial constraint of TS-V were crucial for high behavior. This readily accessible, highly stable, easily recyclable and efficient catalyst would boost the catalytic Mitsunobu reaction.

Abstract Image

Abstract Image

采用dft导向设计一种更高效的氧化还原-中性有机催化mitsunobu反应催化剂
光信反应的研究是一个重要的课题。Denton及其同事首次报道了一种新的(2-羟基苄基)二苯基氧化膦通过五元磷实现催化Mitsunobu反应。然而,如何提高催化剂的效率仍值得进一步研究。在计算和实验研究的指导下,我们设计了一种新型的基于联苯的氧化膦,它可以形成六元磷,作为催化Mitsunobu反应的关键中间体,具有较低的定速步垒(30.3 kcal/mol)。DFT计算表明,催化过程只涉及反式脱水,强π-π相互作用和TS-V的小空间约束是高行为的关键。这种易于获取、高度稳定、易于回收和高效的催化剂将促进催化光信反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
14.40
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信