{"title":"Comparison of Pre-trained vs Custom-trained Word Embedding Models for Word Sense Disambiguation","authors":"Muhammad Farhat Ullah, Ali Saeed, Naveed Hussain","doi":"10.14201/adcaij.31084","DOIUrl":null,"url":null,"abstract":"The prime objective of word sense disambiguation (WSD) is to develop such machines that can automatically recognize the actual meaning (sense) of ambiguous words in a sentence. WSD can improve various NLP and HCI challenges. Researchers explored a wide variety of methods to resolve this issue of sense ambiguity. However, majorly, their focus was on English and some other well-reputed languages. Urdu with more than 300 million users and a large amount of electronic text available on the web is still unexplored. In recent years, for a variety of Natural Language Processing tasks, word embedding methods have proven extremely successful. This study evaluates, compares, and applies a variety of word embedding approaches to Urdu Word embedding (both Lexical Sample and All-Words), including pre-trained (Word2Vec, Glove, and FastText) as well as custom-trained (Word2Vec, Glove, and FastText trained on the Ur-Mono corpus). Two benchmark corpora are used for the evaluation in this study: (1) the UAW-WSD-18 corpus and (2) the ULS-WSD-18 corpus. For Urdu All-Words WSD tasks, top results have been achieved (Accuracy=60.07 and F1=0.45) using pre-trained FastText. For the Lexical Sample, WSD has been achieved (Accuracy=70.93 and F1=0.60) using custom-trained GloVe word embedding method.","PeriodicalId":42597,"journal":{"name":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ADCAIJ-Advances in Distributed Computing and Artificial Intelligence Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14201/adcaij.31084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The prime objective of word sense disambiguation (WSD) is to develop such machines that can automatically recognize the actual meaning (sense) of ambiguous words in a sentence. WSD can improve various NLP and HCI challenges. Researchers explored a wide variety of methods to resolve this issue of sense ambiguity. However, majorly, their focus was on English and some other well-reputed languages. Urdu with more than 300 million users and a large amount of electronic text available on the web is still unexplored. In recent years, for a variety of Natural Language Processing tasks, word embedding methods have proven extremely successful. This study evaluates, compares, and applies a variety of word embedding approaches to Urdu Word embedding (both Lexical Sample and All-Words), including pre-trained (Word2Vec, Glove, and FastText) as well as custom-trained (Word2Vec, Glove, and FastText trained on the Ur-Mono corpus). Two benchmark corpora are used for the evaluation in this study: (1) the UAW-WSD-18 corpus and (2) the ULS-WSD-18 corpus. For Urdu All-Words WSD tasks, top results have been achieved (Accuracy=60.07 and F1=0.45) using pre-trained FastText. For the Lexical Sample, WSD has been achieved (Accuracy=70.93 and F1=0.60) using custom-trained GloVe word embedding method.