{"title":"A Dual-Mode Grade Prediction Architecture for Identifying At-Risk Students","authors":"Wei Qiu;Andy W. H. Khong;S. Supraja;Wenyin Tang","doi":"10.1109/TLT.2023.3333029","DOIUrl":null,"url":null,"abstract":"Predicting student performance in an academic institution is important for detecting at-risk students and to administer early intervention strategies. In this article, we develop a new architecture that achieves grade prediction based only on grades achieved over past semesters. Our proposed architecture involves two stages—weighted loss function incorporated to the long short-term memory (LSTM) model in the first stage, followed by a short-term gated LSTM in the second. The weighted loss function in the first stage ensures low prediction error by weighing loss associated with the minority class label (in our case the at-risk label). The short-term gated LSTM in the second stage, on the other hand, models short-term variations in academic performance to suppress any residual false alarms. Experiment results using three datasets obtained from over 20 000 students across 17 undergraduate courses show that the proposed model achieves a 28.8% improvement in F1 score compared to the LSTM model for at-risk detection. Students identified as at-risk have also been presented and validated by counselors via a dashboard.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"803-814"},"PeriodicalIF":2.9000,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10319353/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting student performance in an academic institution is important for detecting at-risk students and to administer early intervention strategies. In this article, we develop a new architecture that achieves grade prediction based only on grades achieved over past semesters. Our proposed architecture involves two stages—weighted loss function incorporated to the long short-term memory (LSTM) model in the first stage, followed by a short-term gated LSTM in the second. The weighted loss function in the first stage ensures low prediction error by weighing loss associated with the minority class label (in our case the at-risk label). The short-term gated LSTM in the second stage, on the other hand, models short-term variations in academic performance to suppress any residual false alarms. Experiment results using three datasets obtained from over 20 000 students across 17 undergraduate courses show that the proposed model achieves a 28.8% improvement in F1 score compared to the LSTM model for at-risk detection. Students identified as at-risk have also been presented and validated by counselors via a dashboard.
期刊介绍:
The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.