B. Booba , X. Joshphin Jasaline Anitha , C. Mohan , Jeyalaksshmi S
{"title":"Hybrid approach for virtual machine allocation in cloud computing","authors":"B. Booba , X. Joshphin Jasaline Anitha , C. Mohan , Jeyalaksshmi S","doi":"10.1016/j.suscom.2023.100922","DOIUrl":null,"url":null,"abstract":"<div><p><span><span><span>In this manuscript, a Combined Approach of Generalized Backtracking Regularized Adaptive Matching Pursuit Algorithm and Adaptive β-Hill Climbing Algorithm for Virtual Machine Allocation in </span>Cloud Computing<span> (BA-VMA-CC) is proposed. Generalized Backtracking Regularized Adaptive Matching Pursuit Algorithm (GBRAMP) is used for Virtual Machine (VM) Migration process and Adaptive β-Hill Climbing Algorithm is used to Virtual Machine Placement. These two tasks are essential elements of VM allocation. GBRAMP is used to minimize cost and energy for both cloud service providers and users with help of migration process and to save time and energy. Adaptive β-Hill Climbing Algorithm (AβHCA) is employed for maximizing efficiency, minimizing </span></span>power consumption<span><span><span> and resource wastage. By Combining both GBRAMPA-AβHCA VM is optimally allocated in PM with high efficiency by minimizing cost and energy consumptions. The proposed BA-VMA-CC is implemented in MATLAB platform. The performance of proposed method attains 23.84 %, 28.94 %, 33.94 % lower energy consumption, 28.94 %, 34.95 %, 25.36 % lower CPU utilization is analyzed with existing methods, such as sine cosine with ant lion optimization for VM allocation in Cloud Computing (SCA-ALO-VMA-CC), hybrid distinct multiple object whale optimization and multi-verse optimization for VM allocation in Cloud Computing (DMOWOA-MVO-VMA-CC) and </span>Cuckoo search </span>optimization algorithm and </span></span>particle swarm optimization algorithm (CSO-PSO-VMA-CC) respectively.</p></div>","PeriodicalId":48686,"journal":{"name":"Sustainable Computing-Informatics & Systems","volume":"41 ","pages":"Article 100922"},"PeriodicalIF":3.8000,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Computing-Informatics & Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221053792300077X","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In this manuscript, a Combined Approach of Generalized Backtracking Regularized Adaptive Matching Pursuit Algorithm and Adaptive β-Hill Climbing Algorithm for Virtual Machine Allocation in Cloud Computing (BA-VMA-CC) is proposed. Generalized Backtracking Regularized Adaptive Matching Pursuit Algorithm (GBRAMP) is used for Virtual Machine (VM) Migration process and Adaptive β-Hill Climbing Algorithm is used to Virtual Machine Placement. These two tasks are essential elements of VM allocation. GBRAMP is used to minimize cost and energy for both cloud service providers and users with help of migration process and to save time and energy. Adaptive β-Hill Climbing Algorithm (AβHCA) is employed for maximizing efficiency, minimizing power consumption and resource wastage. By Combining both GBRAMPA-AβHCA VM is optimally allocated in PM with high efficiency by minimizing cost and energy consumptions. The proposed BA-VMA-CC is implemented in MATLAB platform. The performance of proposed method attains 23.84 %, 28.94 %, 33.94 % lower energy consumption, 28.94 %, 34.95 %, 25.36 % lower CPU utilization is analyzed with existing methods, such as sine cosine with ant lion optimization for VM allocation in Cloud Computing (SCA-ALO-VMA-CC), hybrid distinct multiple object whale optimization and multi-verse optimization for VM allocation in Cloud Computing (DMOWOA-MVO-VMA-CC) and Cuckoo search optimization algorithm and particle swarm optimization algorithm (CSO-PSO-VMA-CC) respectively.
期刊介绍:
Sustainable computing is a rapidly expanding research area spanning the fields of computer science and engineering, electrical engineering as well as other engineering disciplines. The aim of Sustainable Computing: Informatics and Systems (SUSCOM) is to publish the myriad research findings related to energy-aware and thermal-aware management of computing resource. Equally important is a spectrum of related research issues such as applications of computing that can have ecological and societal impacts. SUSCOM publishes original and timely research papers and survey articles in current areas of power, energy, temperature, and environment related research areas of current importance to readers. SUSCOM has an editorial board comprising prominent researchers from around the world and selects competitively evaluated peer-reviewed papers.