Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution

IF 4.9 2区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Aissam Djahnine , Carole Lazarus , Mathieu Lederlin , Sébastien Mulé , Rafael Wiemker , Salim Si-Mohamed , Emilien Jupin-Delevaux , Olivier Nempont , Youssef Skandarani , Mathieu De Craene , Segbedji Goubalan , Caroline Raynaud , Younes Belkouchi , Amira Ben Afia , Clement Fabre , Gilbert Ferretti , Constance De Margerie , Pierre Berge , Renan Liberge , Nicolas Elbaz , Loic Boussel
{"title":"Detection and severity quantification of pulmonary embolism with 3D CT data using an automated deep learning-based artificial solution","authors":"Aissam Djahnine ,&nbsp;Carole Lazarus ,&nbsp;Mathieu Lederlin ,&nbsp;Sébastien Mulé ,&nbsp;Rafael Wiemker ,&nbsp;Salim Si-Mohamed ,&nbsp;Emilien Jupin-Delevaux ,&nbsp;Olivier Nempont ,&nbsp;Youssef Skandarani ,&nbsp;Mathieu De Craene ,&nbsp;Segbedji Goubalan ,&nbsp;Caroline Raynaud ,&nbsp;Younes Belkouchi ,&nbsp;Amira Ben Afia ,&nbsp;Clement Fabre ,&nbsp;Gilbert Ferretti ,&nbsp;Constance De Margerie ,&nbsp;Pierre Berge ,&nbsp;Renan Liberge ,&nbsp;Nicolas Elbaz ,&nbsp;Loic Boussel","doi":"10.1016/j.diii.2023.09.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Purpose</h3><p>The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations.</p></div><div><h3>Materials and methods</h3><p>Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (<em>i</em>), detecting blood clots; (<em>ii</em>), performing PE-positive versus negative classification; (<em>iii</em>), estimating the Qanadli score; and (<em>iv</em>), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R²) for the Qanadli score and the RV/LV diameter ratio.</p></div><div><h3>Results</h3><p>Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850–0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810–0.890) on the test set. Regression analysis yielded R² value of 0.717 (95% CI: 0.668–0.760) and of 0.723 (95% CI: 0.668–0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set.</p></div><div><h3>Conclusion</h3><p>This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice.</p></div>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diagnostic and Interventional Imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211568423001808","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose

The purpose of this study was to propose a deep learning-based approach to detect pulmonary embolism and quantify its severity using the Qanadli score and the right-to-left ventricle diameter (RV/LV) ratio on three-dimensional (3D) computed tomography pulmonary angiography (CTPA) examinations with limited annotations.

Materials and methods

Using a database of 3D CTPA examinations of 1268 patients with image-level annotations, and two other public datasets of CTPA examinations from 91 (CAD-PE) and 35 (FUME-PE) patients with pixel-level annotations, a pipeline consisting of: (i), detecting blood clots; (ii), performing PE-positive versus negative classification; (iii), estimating the Qanadli score; and (iv), predicting RV/LV diameter ratio was followed. The method was evaluated on a test set including 378 patients. The performance of PE classification and severity quantification was quantitatively assessed using an area under the curve (AUC) analysis for PE classification and a coefficient of determination (R²) for the Qanadli score and the RV/LV diameter ratio.

Results

Quantitative evaluation led to an overall AUC of 0.870 (95% confidence interval [CI]: 0.850–0.900) for PE classification task on the training set and an AUC of 0.852 (95% CI: 0.810–0.890) on the test set. Regression analysis yielded R² value of 0.717 (95% CI: 0.668–0.760) and of 0.723 (95% CI: 0.668–0.766) for the Qanadli score and the RV/LV diameter ratio estimation, respectively on the test set.

Conclusion

This study shows the feasibility of utilizing AI-based assistance tools in detecting blood clots and estimating PE severity scores with 3D CTPA examinations. This is achieved by leveraging blood clots and cardiac segmentations. Further studies are needed to assess the effectiveness of these tools in clinical practice.

使用基于深度学习的自动人工解决方案,利用三维 CT 数据检测肺栓塞并量化其严重程度
目的本研究旨在提出一种基于深度学习的方法,利用 Qanadli 评分和右心室与左心室直径(RV/LV)比值来检测肺栓塞并量化其严重程度,该方法适用于注释有限的三维(3D)计算机断层扫描肺动脉造影(CTPA)检查。材料与方法利用一个包含 1268 名患者的三维 CTPA 检查数据库(带图像级注释)和另外两个公开数据集(分别包含 91 名(CAD-PE)和 35 名(FUME-PE)患者的 CTPA 检查数据库(带像素级注释),建立了一个包括以下内容的管道:(i) 检测血凝块;(ii) 进行 PE 阳性与阴性分类;(iii) 估算 Qanadli 评分;(iv) 预测 RV/LV 直径比。该方法在包括 378 名患者的测试集中进行了评估。使用曲线下面积(AUC)分析对 PE 分类和严重程度量化的性能进行了定量评估,并对 Qanadli 评分和 RV/LV 直径比进行了决定系数(R²)分析。回归分析显示,在测试集上,Qanadli 评分和 RV/LV 直径比估算的 R² 值分别为 0.717(95% CI:0.668-0.760)和 0.723(95% CI:0.668-0.766)。这是通过利用血块和心脏分割来实现的。要评估这些工具在临床实践中的有效性,还需要进一步的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diagnostic and Interventional Imaging
Diagnostic and Interventional Imaging Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
8.50
自引率
29.10%
发文量
126
审稿时长
11 days
期刊介绍: Diagnostic and Interventional Imaging accepts publications originating from any part of the world based only on their scientific merit. The Journal focuses on illustrated articles with great iconographic topics and aims at aiding sharpening clinical decision-making skills as well as following high research topics. All articles are published in English. Diagnostic and Interventional Imaging publishes editorials, technical notes, letters, original and review articles on abdominal, breast, cancer, cardiac, emergency, forensic medicine, head and neck, musculoskeletal, gastrointestinal, genitourinary, interventional, obstetric, pediatric, thoracic and vascular imaging, neuroradiology, nuclear medicine, as well as contrast material, computer developments, health policies and practice, and medical physics relevant to imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信