{"title":"Applying artificial intelligence in healthcare: lessons from the COVID-19 pandemic","authors":"Sreejith Balasubramanian, Vinaya Shukla, Nazrul Islam, Arvind Upadhyay, Linh Duong","doi":"10.1080/00207543.2023.2263102","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic exposed vulnerabilities in global healthcare systems and highlighted the need for innovative, technology-driven solutions like Artificial Intelligence (AI). However, previous research on the topic has been limited and fragmented, leading to an incomplete understanding of the ‘what’, ‘where’ and ‘how’ of its application, as well as its associated benefits and challenges. This study proposes a comprehensive AI framework for healthcare and assesses its effectiveness within the UAE's healthcare sector. It provides valuable insights into AI applications for healthcare stakeholders that range from the molecular to the population level. The study covers the different computational techniques employed, from machine learning to computer vision, and the various types of data inputs fed into these techniques, including clinical, epidemiological, locational, behavioural and genomic data. Additionally, the research highlights AI's capacity to enhance healthcare's operational, quality-related and social outcomes, and recognises regulatory policies, technological infrastructure, stakeholder cooperation and innovation readiness as key facilitators of AI adoption. Lastly, we stress the importance of addressing challenges such as data privacy, security, generalisability and algorithmic bias. Our findings are relevant beyond the pandemic in facilitating the development of AI-related policy interventions and support mechanisms for building resilient healthcare sector that can withstand future challenges.","PeriodicalId":14307,"journal":{"name":"International Journal of Production Research","volume":"87 1","pages":"0"},"PeriodicalIF":7.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Production Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00207543.2023.2263102","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The COVID-19 pandemic exposed vulnerabilities in global healthcare systems and highlighted the need for innovative, technology-driven solutions like Artificial Intelligence (AI). However, previous research on the topic has been limited and fragmented, leading to an incomplete understanding of the ‘what’, ‘where’ and ‘how’ of its application, as well as its associated benefits and challenges. This study proposes a comprehensive AI framework for healthcare and assesses its effectiveness within the UAE's healthcare sector. It provides valuable insights into AI applications for healthcare stakeholders that range from the molecular to the population level. The study covers the different computational techniques employed, from machine learning to computer vision, and the various types of data inputs fed into these techniques, including clinical, epidemiological, locational, behavioural and genomic data. Additionally, the research highlights AI's capacity to enhance healthcare's operational, quality-related and social outcomes, and recognises regulatory policies, technological infrastructure, stakeholder cooperation and innovation readiness as key facilitators of AI adoption. Lastly, we stress the importance of addressing challenges such as data privacy, security, generalisability and algorithmic bias. Our findings are relevant beyond the pandemic in facilitating the development of AI-related policy interventions and support mechanisms for building resilient healthcare sector that can withstand future challenges.
期刊介绍:
The International Journal of Production Research (IJPR), published since 1961, is a well-established, highly successful and leading journal reporting manufacturing, production and operations management research.
IJPR is published 24 times a year and includes papers on innovation management, design of products, manufacturing processes, production and logistics systems. Production economics, the essential behaviour of production resources and systems as well as the complex decision problems that arise in design, management and control of production and logistics systems are considered.
IJPR is a journal for researchers and professors in mechanical engineering, industrial and systems engineering, operations research and management science, and business. It is also an informative reference for industrial managers looking to improve the efficiency and effectiveness of their production systems.