Lorenzo Del Giudice, Stefano Marelli, Bruno Sudret, Michalis F. Vassiliou
{"title":"Global sensitivity analysis of 3D printed material with binder jet technology by using surrogate modeling and polynomial chaos expansion","authors":"Lorenzo Del Giudice, Stefano Marelli, Bruno Sudret, Michalis F. Vassiliou","doi":"10.1007/s40964-023-00459-y","DOIUrl":null,"url":null,"abstract":"Abstract The mechanical properties of 3D printed materials produced with additive manufacturing depend on the printing process, which is controlled by several tuning parameters. This paper focuses on Binder Jet technology and studies the influence of printing resolution, activator percentage, droplet mass, and printing speed on the compressive and flexural strength, as well as on the Young’s modulus of the bulk printed material. As the number of tests required using a one factor at a time approach is not time efficient, a Design of Experiments approach was applied and optimal points in the 4-dimensional parameter space were selected. Then Sobol’ sensitivity indices were calculated for each mechanical property through polynomial chaos expansion. We found that the mechanical properties are primarily controlled by the binder content of the bulk material, namely printing resolution and droplet mass. A smaller dependence on the activator percentage was also found. The printing speed does not affect the mechanical properties studied. In parallel, curing of the specimens at 80–115 °C for 30–120 min increases their strength.","PeriodicalId":36643,"journal":{"name":"Progress in Additive Manufacturing","volume":"3 1","pages":"0"},"PeriodicalIF":4.4000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40964-023-00459-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The mechanical properties of 3D printed materials produced with additive manufacturing depend on the printing process, which is controlled by several tuning parameters. This paper focuses on Binder Jet technology and studies the influence of printing resolution, activator percentage, droplet mass, and printing speed on the compressive and flexural strength, as well as on the Young’s modulus of the bulk printed material. As the number of tests required using a one factor at a time approach is not time efficient, a Design of Experiments approach was applied and optimal points in the 4-dimensional parameter space were selected. Then Sobol’ sensitivity indices were calculated for each mechanical property through polynomial chaos expansion. We found that the mechanical properties are primarily controlled by the binder content of the bulk material, namely printing resolution and droplet mass. A smaller dependence on the activator percentage was also found. The printing speed does not affect the mechanical properties studied. In parallel, curing of the specimens at 80–115 °C for 30–120 min increases their strength.
期刊介绍:
Progress in Additive Manufacturing promotes highly scored scientific investigations from academia, government and industry R&D activities. The journal publishes the advances in the processing of different kinds of materials by well-established and new Additive Manufacturing (AM) technologies. Manuscripts showing the progress in the processing and development of multi-materials by hybrid additive manufacturing or by the combination of additive and subtractive manufacturing technologies are also welcome. Progress in Additive Manufacturing serves as a platform for scientists to contribute full papers as well as review articles and short communications analyzing aspects ranging from data processing (new design tools, data formats), simulation, materials (ceramic, metals, polymers, composites, biomaterials and multi-materials), microstructure development, new AM processes or combination of processes (e.g. additive and subtractive, hybrid, multi-steps), parameter and process optimization, new testing methods for AM parts and process monitoring. The journal welcomes manuscripts in several AM topics, including: • Design tools and data format • Material aspects and new developments • Multi-material and composites • Microstructure evolution of AM parts • Optimization of existing processes • Development of new techniques and processing strategies (combination subtractive and additive methods, hybrid processes) • Integration with conventional manufacturing techniques • Innovative applications of AM parts (for tooling, high temperature or high performance applications) • Process monitoring and non-destructive testing of AM parts • Speed-up strategies for AM processes • New test methods and special features of AM parts