{"title":"J-GAIN v1.1: a flexible tool to incorporate aerosol formation rates obtained by molecular models into large-scale models","authors":"Daniel Yazgi, Tinja Olenius","doi":"10.5194/gmd-16-5237-2023","DOIUrl":null,"url":null,"abstract":"Abstract. New-particle formation from condensable gases is a common atmospheric process that has significant but uncertain effects on aerosol particle number concentrations and aerosol–cloud–climate interactions. Assessing the formation rates of nanometer-sized particles from different vapors is an active field of research within atmospheric sciences, with new data being constantly produced by molecular modeling and experimental studies. Such data can be used in large-scale climate and air quality models through parameterizations or lookup tables. Molecular cluster dynamics modeling, ideally benchmarked against measurements when available for the given precursor vapors, provides a straightforward means to calculate high-resolution formation rate data over wide ranges of atmospheric conditions. Ideally, the incorporation of such data should be easy, efficient and flexible in the sense that same tools can be conveniently applied for different data sets in which the formation rate depends on different parameters. In this work, we present a tool to generate and interpolate lookup tables of formation rates for user-defined input parameters. The table generator primarily applies cluster dynamics modeling to calculate formation rates from an input quantum chemistry data set defined by the user, but the interpolator may also be used for tables generated by other models or data sources. The interpolation routine uses a multivariate interpolation algorithm, which is applicable to different numbers of independent parameters, and gives fast and accurate results with typical interpolation errors of up to a few percent. These routines facilitate the implementation and testing of different aerosol formation rate predictions in large-scale models, allowing the straightforward inclusion of new or updated data without the need to apply separate parameterizations or routines for different data sets that involve different chemical compounds or other parameters.","PeriodicalId":12799,"journal":{"name":"Geoscientific Model Development","volume":"95 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscientific Model Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/gmd-16-5237-2023","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract. New-particle formation from condensable gases is a common atmospheric process that has significant but uncertain effects on aerosol particle number concentrations and aerosol–cloud–climate interactions. Assessing the formation rates of nanometer-sized particles from different vapors is an active field of research within atmospheric sciences, with new data being constantly produced by molecular modeling and experimental studies. Such data can be used in large-scale climate and air quality models through parameterizations or lookup tables. Molecular cluster dynamics modeling, ideally benchmarked against measurements when available for the given precursor vapors, provides a straightforward means to calculate high-resolution formation rate data over wide ranges of atmospheric conditions. Ideally, the incorporation of such data should be easy, efficient and flexible in the sense that same tools can be conveniently applied for different data sets in which the formation rate depends on different parameters. In this work, we present a tool to generate and interpolate lookup tables of formation rates for user-defined input parameters. The table generator primarily applies cluster dynamics modeling to calculate formation rates from an input quantum chemistry data set defined by the user, but the interpolator may also be used for tables generated by other models or data sources. The interpolation routine uses a multivariate interpolation algorithm, which is applicable to different numbers of independent parameters, and gives fast and accurate results with typical interpolation errors of up to a few percent. These routines facilitate the implementation and testing of different aerosol formation rate predictions in large-scale models, allowing the straightforward inclusion of new or updated data without the need to apply separate parameterizations or routines for different data sets that involve different chemical compounds or other parameters.
期刊介绍:
Geoscientific Model Development (GMD) is an international scientific journal dedicated to the publication and public discussion of the description, development, and evaluation of numerical models of the Earth system and its components. The following manuscript types can be considered for peer-reviewed publication:
* geoscientific model descriptions, from statistical models to box models to GCMs;
* development and technical papers, describing developments such as new parameterizations or technical aspects of running models such as the reproducibility of results;
* new methods for assessment of models, including work on developing new metrics for assessing model performance and novel ways of comparing model results with observational data;
* papers describing new standard experiments for assessing model performance or novel ways of comparing model results with observational data;
* model experiment descriptions, including experimental details and project protocols;
* full evaluations of previously published models.