Theorems and conjectures on some rational generating functions

IF 1 3区 数学 Q1 MATHEMATICS
Richard P. Stanley
{"title":"Theorems and conjectures on some rational generating functions","authors":"Richard P. Stanley","doi":"10.1016/j.ejc.2023.103814","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span><math><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> denote the <span><math><mi>i</mi></math></span>th Fibonacci number, and define <span><math><mrow><msubsup><mrow><mo>∏</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><mn>1</mn><mo>+</mo></mrow></mfenced><mfenced><mrow><msup><mrow><mi>x</mi></mrow><mrow><msub><mrow><mi>F</mi></mrow><mrow><mi>i</mi><mo>+</mo><mn>1</mn></mrow></msub></mrow></msup></mrow></mfenced><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>k</mi></mrow></msup></mrow></math></span>. The paper is concerned primarily with the coefficients <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span>. In particular, for any <span><math><mrow><mi>r</mi><mo>≥</mo><mn>0</mn></mrow></math></span> the generating function <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>≥</mo><mn>0</mn></mrow></msub><mrow><mo>(</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>k</mi></mrow></msub><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow><mrow><mi>r</mi></mrow></msup><mo>)</mo></mrow><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span> is rational. The coefficients <span><math><mrow><msub><mrow><mi>c</mi></mrow><mrow><mi>n</mi></mrow></msub><mrow><mo>(</mo><mi>k</mi><mo>)</mo></mrow></mrow></math></span> can be displayed in an array called the <span><em>Fibonacci triangle </em><em>poset</em></span> <span><math><mi>F</mi></math></span><span> with some interesting further properties, including an encoding of a certain dense linear order on the nonnegative integers. Some generalizations are briefly considered, but there remain many open questions.</span></p></div>","PeriodicalId":50490,"journal":{"name":"European Journal of Combinatorics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0195669823001312","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let Fi denote the ith Fibonacci number, and define i=1n1+xFi+1=kcn(k)xk. The paper is concerned primarily with the coefficients cn(k). In particular, for any r0 the generating function n0(kcn(k)r)xn is rational. The coefficients cn(k) can be displayed in an array called the Fibonacci triangle poset F with some interesting further properties, including an encoding of a certain dense linear order on the nonnegative integers. Some generalizations are briefly considered, but there remain many open questions.

关于一些有理生成函数的定理和猜想
让 Fi 表示第 i 个斐波那契数,并定义∏i=1n1+xFi+1=∑kcn(k)xk。本文主要关注 cn(k) 的系数。特别是,对于任意 r≥0 的生成函数 ∑n≥0(∑kcn(k)r)xn 是有理的。cn(k)系数可以显示在一个叫做斐波那契三角形正集 F 的数组中,它还具有一些有趣的性质,包括对非负整数的某种密集线性阶的编码。本文简要讨论了一些概括性问题,但仍有许多悬而未决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
10.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: The European Journal of Combinatorics is a high standard, international, bimonthly journal of pure mathematics, specializing in theories arising from combinatorial problems. The journal is primarily open to papers dealing with mathematical structures within combinatorics and/or establishing direct links between combinatorics and other branches of mathematics and the theories of computing. The journal includes full-length research papers on important topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信