Human-Curated Validation of Machine Learning Algorithms for Health Data

Magnus Boman
{"title":"Human-Curated Validation of Machine Learning Algorithms for Health Data","authors":"Magnus Boman","doi":"10.1007/s44206-023-00076-w","DOIUrl":null,"url":null,"abstract":"Abstract Validation of machine learning algorithms that take health data as input is analysed, leveraging on an example from radiology. A 2-year study of AI use in a university hospital and a connected medical university indicated what was often forgotten by human decision makers in the clinic and by medical researchers. A nine-item laundry list that does not require machine learning expertise to use resulted. The list items guide stakeholders toward complete validation processes and clinical routines for bias-aware, sound, energy-aware and efficient data-driven reasoning for health. The list can also prove useful to machine learning developers, as a list of minimal requirements for successful implementation in the clinic.","PeriodicalId":72819,"journal":{"name":"Digital society : ethics, socio-legal and governance of digital technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital society : ethics, socio-legal and governance of digital technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44206-023-00076-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Validation of machine learning algorithms that take health data as input is analysed, leveraging on an example from radiology. A 2-year study of AI use in a university hospital and a connected medical university indicated what was often forgotten by human decision makers in the clinic and by medical researchers. A nine-item laundry list that does not require machine learning expertise to use resulted. The list items guide stakeholders toward complete validation processes and clinical routines for bias-aware, sound, energy-aware and efficient data-driven reasoning for health. The list can also prove useful to machine learning developers, as a list of minimal requirements for successful implementation in the clinic.
健康数据机器学习算法的人工策划验证
摘要以放射学为例,分析了以健康数据为输入的机器学习算法的验证。一项对大学医院和相关医科大学的人工智能使用情况进行的为期两年的研究表明,诊所的人类决策者和医学研究人员经常忘记这一点。结果是一个不需要机器学习专业知识就能使用的九项清单。清单项目指导利益攸关方进行完整的验证程序和临床程序,以实现有偏见意识的、健全的、有能量意识的和有效的数据驱动的健康推理。该列表也可以证明对机器学习开发人员有用,作为在诊所成功实施的最低要求列表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信