Toward Development of Novel Remote Ultrasound Robotic System Using Soft Robotics Technology

Sky Papendorp, Ammy Ovando, Saleh Gharaie, Bobak Mosadegh, David Guerra-Zubiaga, Seyedhamidreza Alaie, Turaj Ashuri, Amir Ali Amiri Moghadam
{"title":"Toward Development of Novel Remote Ultrasound Robotic System Using Soft Robotics Technology","authors":"Sky Papendorp, Ammy Ovando, Saleh Gharaie, Bobak Mosadegh, David Guerra-Zubiaga, Seyedhamidreza Alaie, Turaj Ashuri, Amir Ali Amiri Moghadam","doi":"10.1115/1.4063469","DOIUrl":null,"url":null,"abstract":"Abstract This paper reports on the development of a novel soft robotic system for remote ultrasound applications. Direct contact of the ultrasound probe with the patient's body represents a safety risk and therefore control of the probe's positioning and applied force is a crucial task. The proposed robot uses a passive control system that provides safe interaction between the robot and the patient by leveraging soft robotics technology. The soft robot's structure can be considered as a nonlinear spring which can be designed to exert a safe force within the robot's workspace to guarantee the safety of human–robot interaction. The literature suggests that effective ultrasound imaging of both the heart and abdomen requires six degrees-of-freedom. These degrees-of-freedom consist of three translational motions, which are achieved using a novel hybrid soft cable-driven parallel robot, and three wrist motions, which is based on a universal joint design. The experimental results show that the robot can achieve all these six degrees-of-freedom, and its blocking force can be engineered to generate a uniform force within the workspace.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4063469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract This paper reports on the development of a novel soft robotic system for remote ultrasound applications. Direct contact of the ultrasound probe with the patient's body represents a safety risk and therefore control of the probe's positioning and applied force is a crucial task. The proposed robot uses a passive control system that provides safe interaction between the robot and the patient by leveraging soft robotics technology. The soft robot's structure can be considered as a nonlinear spring which can be designed to exert a safe force within the robot's workspace to guarantee the safety of human–robot interaction. The literature suggests that effective ultrasound imaging of both the heart and abdomen requires six degrees-of-freedom. These degrees-of-freedom consist of three translational motions, which are achieved using a novel hybrid soft cable-driven parallel robot, and three wrist motions, which is based on a universal joint design. The experimental results show that the robot can achieve all these six degrees-of-freedom, and its blocking force can be engineered to generate a uniform force within the workspace.
基于软机器人技术的新型远程超声机器人系统研究
摘要:本文报道了一种新型远程超声软机器人系统的开发。超声探头与患者身体直接接触存在安全风险,因此控制探头的定位和施加力是一项至关重要的任务。该机器人采用被动控制系统,利用软机器人技术提供机器人与患者之间的安全交互。软机器人的结构可以看作是一个非线性弹簧,可以设计成在机器人工作空间内施加安全力,以保证人机交互的安全性。文献表明,对心脏和腹部进行有效的超声成像需要六个自由度。这些自由度包括三个平移运动(使用一种新型的混合软缆驱动并联机器人实现)和三个手腕运动(基于万向关节设计)。实验结果表明,该机器人可以实现这6个自由度,并且可以设计其阻挡力,使其在工作空间内产生均匀的力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信