Noorfadzli Abdul Razak, Nur Alya Aqilah Sabri, Juliana Johari, Fazlina Ahmat Ruslan, Mahanijah Md. Kamal, Mohd Azri Abdul Aziz
{"title":"Investigation of Object Detection and Identification at Different Lighting Conditions for Autonomous Vehicle Application","authors":"Noorfadzli Abdul Razak, Nur Alya Aqilah Sabri, Juliana Johari, Fazlina Ahmat Ruslan, Mahanijah Md. Kamal, Mohd Azri Abdul Aziz","doi":"10.15282/ijame.20.3.2023.08.0822","DOIUrl":null,"url":null,"abstract":"Ensuring the safety of autonomous vehicles requires effective detection and tracking of surrounding objects. This paper proposes the design and development of a driverless transportation system module focused on identifying obstacles around vehicles. By integrating computer vision with deep learning, the system presents a reliable and cost-effective solution for autonomous driving. Utilizing Raspberry Pi 4B and a USB webcam, a compact hardware setup is created for seamless implementation in autonomous vehicles. The algorithm presented in this study enables the detection, classification, and tracking of both moving and stationary objects, including cars, buses, trucks, people, and motorcycles. TensorFlow Lite, a deep-learning network, is employed for efficient object detection and classification. Leveraging Python as the primary programming language, known for its high-level object-oriented features and integrated semantics, the algorithm is tailored for web and application development. Experimental results demonstrate the system’s capability to concurrently detect and identify multiple local objects with an accuracy ranging from 50% to 80% in day and night conditions. These findings underscore the potential of deep learning in advancing autonomous vehicle technology.","PeriodicalId":13935,"journal":{"name":"International Journal of Automotive and Mechanical Engineering","volume":"157 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Automotive and Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15282/ijame.20.3.2023.08.0822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Ensuring the safety of autonomous vehicles requires effective detection and tracking of surrounding objects. This paper proposes the design and development of a driverless transportation system module focused on identifying obstacles around vehicles. By integrating computer vision with deep learning, the system presents a reliable and cost-effective solution for autonomous driving. Utilizing Raspberry Pi 4B and a USB webcam, a compact hardware setup is created for seamless implementation in autonomous vehicles. The algorithm presented in this study enables the detection, classification, and tracking of both moving and stationary objects, including cars, buses, trucks, people, and motorcycles. TensorFlow Lite, a deep-learning network, is employed for efficient object detection and classification. Leveraging Python as the primary programming language, known for its high-level object-oriented features and integrated semantics, the algorithm is tailored for web and application development. Experimental results demonstrate the system’s capability to concurrently detect and identify multiple local objects with an accuracy ranging from 50% to 80% in day and night conditions. These findings underscore the potential of deep learning in advancing autonomous vehicle technology.
期刊介绍:
The IJAME provides the forum for high-quality research communications and addresses all aspects of original experimental information based on theory and their applications. This journal welcomes all contributions from those who wish to report on new developments in automotive and mechanical engineering fields within the following scopes. -Engine/Emission Technology Automobile Body and Safety- Vehicle Dynamics- Automotive Electronics- Alternative Energy- Energy Conversion- Fuels and Lubricants - Combustion and Reacting Flows- New and Renewable Energy Technologies- Automotive Electrical Systems- Automotive Materials- Automotive Transmission- Automotive Pollution and Control- Vehicle Maintenance- Intelligent Vehicle/Transportation Systems- Fuel Cell, Hybrid, Electrical Vehicle and Other Fields of Automotive Engineering- Engineering Management /TQM- Heat and Mass Transfer- Fluid and Thermal Engineering- CAE/FEA/CAD/CFD- Engineering Mechanics- Modeling and Simulation- Metallurgy/ Materials Engineering- Applied Mechanics- Thermodynamics- Agricultural Machinery and Equipment- Mechatronics- Automatic Control- Multidisciplinary design and optimization - Fluid Mechanics and Dynamics- Thermal-Fluids Machinery- Experimental and Computational Mechanics - Measurement and Instrumentation- HVAC- Manufacturing Systems- Materials Processing- Noise and Vibration- Composite and Polymer Materials- Biomechanical Engineering- Fatigue and Fracture Mechanics- Machine Components design- Gas Turbine- Power Plant Engineering- Artificial Intelligent/Neural Network- Robotic Systems- Solar Energy- Powder Metallurgy and Metal Ceramics- Discrete Systems- Non-linear Analysis- Structural Analysis- Tribology- Engineering Materials- Mechanical Systems and Technology- Pneumatic and Hydraulic Systems - Failure Analysis- Any other related topics.