Extremely Energy-Efficient Non-Linear Function Approximation Framework Using Stochastic Superconductor Devices

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Olivia Chen;Renyuan Zhang;Wenhui Luo;Yanzhi Wang;Nobuyuki Yoshikawa
{"title":"Extremely Energy-Efficient Non-Linear Function Approximation Framework Using Stochastic Superconductor Devices","authors":"Olivia Chen;Renyuan Zhang;Wenhui Luo;Yanzhi Wang;Nobuyuki Yoshikawa","doi":"10.1109/TETC.2023.3330979","DOIUrl":null,"url":null,"abstract":"Recently developed adiabatic quantum-flux-parametron (AQFP) superconducting technology achieves the highest energy efficiency among various superconducting logic families, potentially 10\n<sup>4</sup>\n-10\n<sup>5</sup>\n gain compared with state-of-the-art CMOS. Besides ultra-high energy efficiency, AQFP exhibits two unique characteristics: the deep pipelining nature as all logic gates are clocked and the potential of building stochastic number generators (SNGs) using a single AQFP gate, far more efficient than SNGs implemented in conventional CMOS. These unique characteristics indicate that the AQFP technology is highly compatible with stochastic computing (SC) implementations, where operands are represented by a time-independent bit sequence utilizing the deep pipelining structure of AQFP. To shed some light on the SC-based design methodology on novel superconducting technologies, we propose an AQFP-based non-linear function approximation framework with the fashion of Bernstein polynomials, achieving a general hardware architecture to perform multiple non-linear functions without any extra hardware overhead. Experimental results of 9 common non-linear functions widely used in pattern recognition, signal processing, and neural networks reveal that our work provides outstanding energy efficiency with sufficient computing accuracy. The energy-delay-error-product (EDE\n<sub>MAE</sub>\nP) of the proposed design, in terms of the polynomial degree of 3, 5 and 7, are 3.47 × 10\n<sup>−25</sup>\nJ\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\ns, 3.63 × 10\n<sup>−25</sup>\nJ\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\ns and 6.79 × 10\n<sup>−25</sup>\nJ\n<inline-formula><tex-math>$\\cdot$</tex-math></inline-formula>\ns on average, respectively, achieving 5-6 orders better performance than its CMOS counterpart. Further discussions on the measurement results of trial-fabricated AQFP comparators reveal the future research directions of AQFP-based SC implementations.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 4","pages":"956-967"},"PeriodicalIF":5.1000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10318057/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently developed adiabatic quantum-flux-parametron (AQFP) superconducting technology achieves the highest energy efficiency among various superconducting logic families, potentially 10 4 -10 5 gain compared with state-of-the-art CMOS. Besides ultra-high energy efficiency, AQFP exhibits two unique characteristics: the deep pipelining nature as all logic gates are clocked and the potential of building stochastic number generators (SNGs) using a single AQFP gate, far more efficient than SNGs implemented in conventional CMOS. These unique characteristics indicate that the AQFP technology is highly compatible with stochastic computing (SC) implementations, where operands are represented by a time-independent bit sequence utilizing the deep pipelining structure of AQFP. To shed some light on the SC-based design methodology on novel superconducting technologies, we propose an AQFP-based non-linear function approximation framework with the fashion of Bernstein polynomials, achieving a general hardware architecture to perform multiple non-linear functions without any extra hardware overhead. Experimental results of 9 common non-linear functions widely used in pattern recognition, signal processing, and neural networks reveal that our work provides outstanding energy efficiency with sufficient computing accuracy. The energy-delay-error-product (EDE MAE P) of the proposed design, in terms of the polynomial degree of 3, 5 and 7, are 3.47 × 10 −25 J $\cdot$ s, 3.63 × 10 −25 J $\cdot$ s and 6.79 × 10 −25 J $\cdot$ s on average, respectively, achieving 5-6 orders better performance than its CMOS counterpart. Further discussions on the measurement results of trial-fabricated AQFP comparators reveal the future research directions of AQFP-based SC implementations.
利用随机超导体器件的极节能非线性函数近似框架
最近开发的绝热量子通量参数(AQFP)超导技术在各种超导逻辑族中实现了最高的能量效率,与最先进的CMOS相比,潜在增益为104-105。除了超高的能源效率,AQFP还具有两个独特的特点:深层流水线性质,因为所有逻辑门都是定时的;使用单个AQFP门构建随机数字发生器(sng)的潜力,比传统CMOS中实现的sng效率高得多。这些独特的特性表明AQFP技术与随机计算(SC)实现高度兼容,其中操作数由利用AQFP的深管道结构的时间无关的位序列表示。为了阐明基于sc的新型超导技术设计方法,我们提出了一种基于aqfp的非线性函数近似框架,采用Bernstein多项式的方式,实现了一个通用的硬件架构,可以在没有任何额外硬件开销的情况下执行多个非线性函数。在模式识别、信号处理和神经网络中广泛应用的9种常见非线性函数的实验结果表明,我们的工作在具有足够计算精度的情况下提供了出色的能效。基于3、5和7次多项式的能量延迟误差积(EDEMAEP)平均分别为3.47 × 10−25J$\cdot$s、3.63 × 10−25J$\cdot$s和6.79 × 10−25J$\cdot$s,性能优于CMOS器件5-6个数量级。对试制AQFP比较器测量结果的进一步讨论揭示了基于AQFP的SC实现的未来研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信