Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS

IF 2.2 2区 农林科学 Q2 AGRICULTURAL ENGINEERING
Jicheng Huang, Li Tan, Kunpeng Tian, Bin Zhang, Aimin Ji, Haolu Liu, Cheng Shen
{"title":"Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS","authors":"Jicheng Huang, Li Tan, Kunpeng Tian, Bin Zhang, Aimin Ji, Haolu Liu, Cheng Shen","doi":"10.25165/j.ijabe.20231604.7978","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester, which is unfavorable for the subsequent picking-up, this paper analyzed the laying process and laying angles, and built a conveyor-plant rigid-flexible coupling model for simulating the laying of hemp plant. Moreover, the operating parameters were tested and optimized based on the central composite design theory, and carried out multi-objective optimization with the minimum laying angle as the response index. Firstly, the formation mechanism of the laying angle of hemp harvester was studied. Secondly, a test was designed with the quadratic orthogonal rotational combination test method, with the data being processed by Design-Expert. A regression mathematical model of the laying angle was built, and the influence of the interactions between factors on the laying angle was analyzed with the response surface method. Furthermore, multi-objective optimization was conducted on the regression model according to the actual production design requirements. As a result, the best combination was obtained, that is, when the forward speed is 0.7 m/s, speed ratio 1.40, and stubble height 95 mm, the minimum laying angle can be obtained, namely 124.9°. The optimization parameters were verified by the simulation and field tests. The simulation test showed that the simulated laying angle is 125.2°, with a relative error of 0.24% from the theoretical value, under the best combination of parameters. The field test showed that the average laying angle of hemp plant is 121.8°, with a relative error of 2.5% from the theoretical value, under the best combination of parameters. The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters. Keywords: agricultural machinery, hemp, laying angle, rigid-flexible coupling model, optimization, response surface analysis DOI: 10.25165/j.ijabe.20231604.7978 Citation: Huang J C, Tan L, Tian K P, Zhang B, Ji A M, Liu H L, Shen C. Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS. Int J Agric & Biol Eng, 2023; 16(4): 109–115.","PeriodicalId":13895,"journal":{"name":"International Journal of Agricultural and Biological Engineering","volume":"105 1","pages":"0"},"PeriodicalIF":2.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Agricultural and Biological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25165/j.ijabe.20231604.7978","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Aiming at the problem of large differences in the laying angle and posture of plants cut by the hemp harvester, which is unfavorable for the subsequent picking-up, this paper analyzed the laying process and laying angles, and built a conveyor-plant rigid-flexible coupling model for simulating the laying of hemp plant. Moreover, the operating parameters were tested and optimized based on the central composite design theory, and carried out multi-objective optimization with the minimum laying angle as the response index. Firstly, the formation mechanism of the laying angle of hemp harvester was studied. Secondly, a test was designed with the quadratic orthogonal rotational combination test method, with the data being processed by Design-Expert. A regression mathematical model of the laying angle was built, and the influence of the interactions between factors on the laying angle was analyzed with the response surface method. Furthermore, multi-objective optimization was conducted on the regression model according to the actual production design requirements. As a result, the best combination was obtained, that is, when the forward speed is 0.7 m/s, speed ratio 1.40, and stubble height 95 mm, the minimum laying angle can be obtained, namely 124.9°. The optimization parameters were verified by the simulation and field tests. The simulation test showed that the simulated laying angle is 125.2°, with a relative error of 0.24% from the theoretical value, under the best combination of parameters. The field test showed that the average laying angle of hemp plant is 121.8°, with a relative error of 2.5% from the theoretical value, under the best combination of parameters. The results may provide a reference for the structural improvement and operating parameter control of hemp harvesters. Keywords: agricultural machinery, hemp, laying angle, rigid-flexible coupling model, optimization, response surface analysis DOI: 10.25165/j.ijabe.20231604.7978 Citation: Huang J C, Tan L, Tian K P, Zhang B, Ji A M, Liu H L, Shen C. Formation mechanism for the laying angle of hemp harvester based on ANSYS-ADAMS. Int J Agric & Biol Eng, 2023; 16(4): 109–115.
基于ANSYS-ADAMS的大麻收割机铺放角形成机理研究
针对大麻收获机割下的植株铺放角度和姿态差异大,不利于后续拾取的问题,分析了大麻收获机的铺放过程和铺放角度,建立了模拟大麻植株铺放的输送机-植株刚柔耦合模型。基于中心复合设计理论对运行参数进行了测试和优化,以最小敷设角为响应指标进行了多目标优化。首先,对大麻收获机布放角的形成机理进行了研究。其次,采用二次正交旋转组合试验法设计试验,并用Design-Expert软件对试验数据进行处理。建立了铺设角的回归数学模型,利用响应面法分析了各因素之间的相互作用对铺设角的影响。根据实际生产设计要求,对回归模型进行多目标优化。得到了最佳组合,即前进速度为0.7 m/s,速比为1.40,残茬高度为95 mm时,最小敷设角度为124.9°。通过仿真和现场试验验证了优化参数的正确性。仿真试验表明,在最佳参数组合下,模拟的铺设角为125.2°,与理论值的相对误差为0.24%。田间试验结果表明,在最佳参数组合下,大麻植株的平均铺放角为121.8°,与理论值的相对误差为2.5%。研究结果可为大麻收割机的结构改进和操作参数控制提供参考。关键词:农业机械,大麻,铺放角,刚柔耦合模型,优化,响应面分析[DOI: 10.25165/ j.j ijabe.20231604.7978]引用本文:黄建超,谭玲,田凯平,张斌,季爱民,刘海林,沈晨。基于ANSYS-ADAMS的大麻收割机铺放角形成机理研究。农业与生物工程学报,2023;16(4): 109 - 115。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.30
自引率
12.50%
发文量
88
审稿时长
24 weeks
期刊介绍: International Journal of Agricultural and Biological Engineering (IJABE, https://www.ijabe.org) is a peer reviewed open access international journal. IJABE, started in 2008, is a joint publication co-sponsored by US-based Association of Agricultural, Biological and Food Engineers (AOCABFE) and China-based Chinese Society of Agricultural Engineering (CSAE). The ISSN 1934-6344 and eISSN 1934-6352 numbers for both print and online IJABE have been registered in US. Now, Int. J. Agric. & Biol. Eng (IJABE) is published in both online and print version by Chinese Academy of Agricultural Engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信