Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures

IF 16.1 1区 工程技术 Q1 ENGINEERING, MANUFACTURING
Qiang Liu, Wei Xu, Xiaoxi Li, Tongyao Zhang, Chengbing Qin, Fang Luo, Zhihong Zhu, Shiqiao Qin, Mengjian Zhu, Kostya S. Novoselov
{"title":"Electrically-driven ultrafast out-of-equilibrium light emission from hot electrons in suspended graphene/hBN heterostructures","authors":"Qiang Liu, Wei Xu, Xiaoxi Li, Tongyao Zhang, Chengbing Qin, Fang Luo, Zhihong Zhu, Shiqiao Qin, Mengjian Zhu, Kostya S. Novoselov","doi":"10.1088/2631-7990/acfbc2","DOIUrl":null,"url":null,"abstract":"Abstract Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics. The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter, which can be further integrated into arbitrary platforms by van der Waals forces. However, due to the zero bandgap, graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors. Here, we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride (Gr/hBN) heterostructures. Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields, emitting bright photons from the near-infrared to the visible spectral range. By eliminating the heat dissipation channel of the substrate, the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO 2 or hBN. We further demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium. Direct cooling of high-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface, resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation. It is found that suspending the Gr/hBN heterostructures on the SiO 2 trenches significantly modifies the light emission due to the formation of the optical cavity and showed a ∼440% enhancement in intensity at the peak wavelength of 940 nm compared to the black-body thermal radiation. The demonstration of electrically driven ultrafast light emission from suspended Gr/hBN heterostructures sheds the light on applications of graphene heterostructures in photonic integrated circuits, such as broadband light sources and ultrafast thermo-optic phase modulators.","PeriodicalId":52353,"journal":{"name":"International Journal of Extreme Manufacturing","volume":"1 1","pages":"0"},"PeriodicalIF":16.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Extreme Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2631-7990/acfbc2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Nanoscale light sources with high speed of electrical modulation and low energy consumption are key components for nanophotonics and optoelectronics. The record-high carrier mobility and ultrafast carrier dynamics of graphene make it promising as an atomically thin light emitter, which can be further integrated into arbitrary platforms by van der Waals forces. However, due to the zero bandgap, graphene is difficult to emit light through the interband recombination of carriers like conventional semiconductors. Here, we demonstrate ultrafast thermal light emitters based on suspended graphene/hexagonal boron nitride (Gr/hBN) heterostructures. Electrons in biased graphene are significantly heated up to 2800 K at modest electric fields, emitting bright photons from the near-infrared to the visible spectral range. By eliminating the heat dissipation channel of the substrate, the radiation efficiency of the suspended Gr/hBN device is about two orders of magnitude greater than that of graphene devices supported on SiO 2 or hBN. We further demonstrate that hot electrons and low-energy acoustic phonons in graphene are weakly coupled to each other and are not in full thermal equilibrium. Direct cooling of high-temperature hot electrons to low-temperature acoustic phonons is enabled by the significant near-field heat transfer at the highly localized Gr/hBN interface, resulting in ultrafast thermal emission with up to 1 GHz bandwidth under electrical excitation. It is found that suspending the Gr/hBN heterostructures on the SiO 2 trenches significantly modifies the light emission due to the formation of the optical cavity and showed a ∼440% enhancement in intensity at the peak wavelength of 940 nm compared to the black-body thermal radiation. The demonstration of electrically driven ultrafast light emission from suspended Gr/hBN heterostructures sheds the light on applications of graphene heterostructures in photonic integrated circuits, such as broadband light sources and ultrafast thermo-optic phase modulators.
悬浮石墨烯/hBN异质结构中热电子的超快非平衡发光
具有高速电调制和低能耗的纳米光源是纳米光子学和光电子学的关键器件。石墨烯创纪录的高载流子迁移率和超快的载流子动力学特性使其成为一种极有前途的原子薄光发射器,可以通过范德华力进一步集成到任意平台上。然而,由于零带隙,石墨烯很难像传统半导体那样通过载流子的带间复合发光。在这里,我们展示了基于悬浮石墨烯/六方氮化硼(Gr/hBN)异质结构的超快热光源。偏置石墨烯中的电子在适度的电场下被显著加热到2800 K,从近红外到可见光谱范围内发射明亮的光子。通过消除衬底的散热通道,悬浮式Gr/hBN器件的辐射效率比在sio2或hBN上支撑的石墨烯器件高出约两个数量级。我们进一步证明了石墨烯中的热电子和低能声子彼此弱耦合,并且不是完全热平衡。在高度局域化的Gr/hBN界面上,通过显著的近场传热,高温热电子可以直接冷却到低温声子,从而在电激励下产生带宽高达1 GHz的超快热发射。研究发现,将Gr/hBN异质结构悬浮在sio2沟槽上,由于光学腔的形成,显著改变了光发射,与黑体热辐射相比,在940 nm峰值波长处的强度提高了约440%。悬浮Gr/hBN异质结构的电驱动超快光发射的演示,为石墨烯异质结构在光子集成电路中的应用提供了新的视角,如宽带光源和超快热光相位调制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Extreme Manufacturing
International Journal of Extreme Manufacturing Engineering-Industrial and Manufacturing Engineering
CiteScore
17.70
自引率
6.10%
发文量
83
审稿时长
12 weeks
期刊介绍: The International Journal of Extreme Manufacturing (IJEM) focuses on publishing original articles and reviews related to the science and technology of manufacturing functional devices and systems with extreme dimensions and/or extreme functionalities. The journal covers a wide range of topics, from fundamental science to cutting-edge technologies that push the boundaries of currently known theories, methods, scales, environments, and performance. Extreme manufacturing encompasses various aspects such as manufacturing with extremely high energy density, ultrahigh precision, extremely small spatial and temporal scales, extremely intensive fields, and giant systems with extreme complexity and several factors. It encompasses multiple disciplines, including machinery, materials, optics, physics, chemistry, mechanics, and mathematics. The journal is interested in theories, processes, metrology, characterization, equipment, conditions, and system integration in extreme manufacturing. Additionally, it covers materials, structures, and devices with extreme functionalities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信