Overexpression of GhSWEET42 , a SWEET -like gene from cotton, enhances the oil content and seed size

IF 1.5 4区 生物学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Deying Wang, Mengxue Du, Jingyu Li, Shuwen Yin, Yongwang Sun, Shangjing Guo
{"title":"Overexpression of <i>GhSWEET42</i> , a <i>SWEET</i> -like gene from cotton, enhances the oil content and seed size","authors":"Deying Wang, Mengxue Du, Jingyu Li, Shuwen Yin, Yongwang Sun, Shangjing Guo","doi":"10.1080/13102818.2023.2266529","DOIUrl":null,"url":null,"abstract":"SWEET (‘sugars will eventually be exported transporters’) family genes reportedly play a critical role in sugar translocation and oil biosynthesis in various plant species. However, their functions in cotton are unknown. The present study demonstrated that while GhSWEET42 was widely expressed in different cotton tissues, it had the highest expression level in the developing ovules. Hence, it performs a vital role in seed development. We constructed GhSWEET42 transgenic Arabidopsis lines to verify the biological function of this gene and found that the oil content and weight of the seeds produced by the overexpression lines were 18–23% and 19–20% higher, respectively than those of the wild-type. Gas chromatography–mass spectrometry (GC–MS) analysis revealed that it was mainly a relative increase in unsaturated fatty acids (FAs) that contributed to the relative increase in oil content in the transgenic seeds. Moreover, the latter exhibited comparative upregulation of certain genes associated with FA and triacylglycerol biosynthesis as well as cell expansion. GhSWEET42 might work synergistically with the aforementioned genes. This finding indicates that GhSWEET42 may be essential in oil biosynthesis and seed development in cotton. The results of the present work may facilitate further explorations into the molecular mechanism of cottonseed oil biosynthesis as well as the cultivation of novel oil-rich cotton varieties.","PeriodicalId":9076,"journal":{"name":"Biotechnology & Biotechnological Equipment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology & Biotechnological Equipment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/13102818.2023.2266529","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

SWEET (‘sugars will eventually be exported transporters’) family genes reportedly play a critical role in sugar translocation and oil biosynthesis in various plant species. However, their functions in cotton are unknown. The present study demonstrated that while GhSWEET42 was widely expressed in different cotton tissues, it had the highest expression level in the developing ovules. Hence, it performs a vital role in seed development. We constructed GhSWEET42 transgenic Arabidopsis lines to verify the biological function of this gene and found that the oil content and weight of the seeds produced by the overexpression lines were 18–23% and 19–20% higher, respectively than those of the wild-type. Gas chromatography–mass spectrometry (GC–MS) analysis revealed that it was mainly a relative increase in unsaturated fatty acids (FAs) that contributed to the relative increase in oil content in the transgenic seeds. Moreover, the latter exhibited comparative upregulation of certain genes associated with FA and triacylglycerol biosynthesis as well as cell expansion. GhSWEET42 might work synergistically with the aforementioned genes. This finding indicates that GhSWEET42 may be essential in oil biosynthesis and seed development in cotton. The results of the present work may facilitate further explorations into the molecular mechanism of cottonseed oil biosynthesis as well as the cultivation of novel oil-rich cotton varieties.
棉花中类似SWEET的基因GhSWEET42的过表达可以提高含油量和种子大小
据报道,SWEET(“糖最终会被输出转运体”)家族基因在多种植物的糖转运和油脂生物合成中起着关键作用。然而,它们在棉花中的作用尚不清楚。本研究表明,虽然GhSWEET42在棉花不同组织中广泛表达,但在发育中的胚珠中表达量最高。因此,它在种子发育中起着至关重要的作用。为了验证该基因的生物学功能,我们构建了转基因GhSWEET42拟南芥品系,结果发现,过表达品系生产的种子含油量和重量分别比野生型高18-23%和19-20%。气相色谱-质谱(GC-MS)分析表明,转基因种子含油量的相对增加主要是由于不饱和脂肪酸(FAs)含量的相对增加。此外,后者表现出与FA和甘油三酯生物合成以及细胞扩增相关的某些基因的相对上调。GhSWEET42可能与上述基因协同作用。这一发现表明GhSWEET42可能在棉花油脂生物合成和种子发育中起重要作用。本研究结果为进一步探索棉籽油生物合成的分子机制和培育富油棉花新品种提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biotechnology & Biotechnological Equipment
Biotechnology & Biotechnological Equipment 工程技术-生物工程与应用微生物
CiteScore
3.10
自引率
0.00%
发文量
90
审稿时长
1 months
期刊介绍: Biotechnology & Biotechnological Equipment (B&BE) is an international open access journal publishing cutting-edge research. A modern world requires modern biotechnology and nanobiology. The journal is a forum that provides society with valuable information for a healthy and better life and promotes “the Science and Culture of Nature”. The journal publishes original research and reviews with a multidisciplinary perspective; expanded case reports with a focus on molecular medical research and advanced practice in evidence-based medicine are also considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信