HOTFLOOR: A benthic chamber system to simulate warming on the seafloor

IF 2.1 3区 地球科学 Q2 LIMNOLOGY
Norman Göbeler, Laura Kauppi, Robin Gottberg, Göran Lundberg, Alf Norkko, Joanna Norkko
{"title":"HOTFLOOR: A benthic chamber system to simulate warming on the seafloor","authors":"Norman Göbeler,&nbsp;Laura Kauppi,&nbsp;Robin Gottberg,&nbsp;Göran Lundberg,&nbsp;Alf Norkko,&nbsp;Joanna Norkko","doi":"10.1002/lom3.10581","DOIUrl":null,"url":null,"abstract":"<p>The frequency of abnormally warm water events is increasing not only in surface waters, but also in subsurface layers, with major impacts on benthic ecosystems. Previous insights on heatwave effects have been obtained through field observations or manipulative laboratory experiments. Here, we introduce a system capable of inducing elevated water temperatures in benthic habitats in situ over several days. The system consists of a commercially available electric boiler, usually applied in domestic underfloor heating, and custom-designed benthic acrylic glass chambers connected to individual thermostats. Furthermore, the chambers are semi-open, allowing constant water exchange, maintaining otherwise near-natural conditions, including oxygen concentrations, while the temperature is elevated. The water exchange can be stopped to facilitate incubations measuring changes in benthic fluxes. We conducted a 15-d trial study in July 2021 on a bare-sediment habitat at 2.5 m depth, exposing five chambers to water temperatures 5°C above ambient temperatures for 6 d and comparing with five control chambers. In this assessment, we demonstrate that the temperature control and stability were reliable while maintaining natural oxygen conditions. The modular character of the system permits adaptations for various benthic habitats, facilitating the investigation of elevated temperatures in situ for future climate change scenarios.</p>","PeriodicalId":18145,"journal":{"name":"Limnology and Oceanography: Methods","volume":"21 12","pages":"790-799"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://aslopubs.onlinelibrary.wiley.com/doi/epdf/10.1002/lom3.10581","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography: Methods","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/lom3.10581","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The frequency of abnormally warm water events is increasing not only in surface waters, but also in subsurface layers, with major impacts on benthic ecosystems. Previous insights on heatwave effects have been obtained through field observations or manipulative laboratory experiments. Here, we introduce a system capable of inducing elevated water temperatures in benthic habitats in situ over several days. The system consists of a commercially available electric boiler, usually applied in domestic underfloor heating, and custom-designed benthic acrylic glass chambers connected to individual thermostats. Furthermore, the chambers are semi-open, allowing constant water exchange, maintaining otherwise near-natural conditions, including oxygen concentrations, while the temperature is elevated. The water exchange can be stopped to facilitate incubations measuring changes in benthic fluxes. We conducted a 15-d trial study in July 2021 on a bare-sediment habitat at 2.5 m depth, exposing five chambers to water temperatures 5°C above ambient temperatures for 6 d and comparing with five control chambers. In this assessment, we demonstrate that the temperature control and stability were reliable while maintaining natural oxygen conditions. The modular character of the system permits adaptations for various benthic habitats, facilitating the investigation of elevated temperatures in situ for future climate change scenarios.

Abstract Image

HOTFLOOR:模拟海底变暖的底栖室系统
异常暖水事件的频率不仅在表层增加,而且在次表层也在增加,对底栖生态系统产生了重大影响。以前对热浪影响的认识是通过实地观察或可操作的实验室实验获得的。在这里,我们介绍了一个系统,能够在几天内引起底栖动物栖息地水温升高。该系统包括一个商用电锅炉,通常用于家庭地板采暖,以及连接到单独恒温器的定制底栖丙烯酸玻璃室。此外,这些腔室是半开放的,允许持续的水交换,在温度升高的情况下保持接近自然的条件,包括氧气浓度。可以停止水的交换,以促进孵育,测量底栖生物通量的变化。我们于2021年7月在2.5 m深度的裸沉积物栖息地进行了为期15天的试验研究,将五个室暴露在高于环境温度5°C的水温中6天,并与五个控制室进行比较。在这次评估中,我们证明了在保持自然氧气条件下温度控制和稳定性是可靠的。该系统的模块化特性允许适应各种底栖生物栖息地,促进对未来气候变化情景的原位高温调查。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.80
自引率
3.70%
发文量
56
审稿时长
3 months
期刊介绍: Limnology and Oceanography: Methods (ISSN 1541-5856) is a companion to ASLO''s top-rated journal Limnology and Oceanography, and articles are held to the same high standards. In order to provide the most rapid publication consistent with high standards, Limnology and Oceanography: Methods appears in electronic format only, and the entire submission and review system is online. Articles are posted as soon as they are accepted and formatted for publication. Limnology and Oceanography: Methods will consider manuscripts whose primary focus is methodological, and that deal with problems in the aquatic sciences. Manuscripts may present new measurement equipment, techniques for analyzing observations or samples, methods for understanding and interpreting information, analyses of metadata to examine the effectiveness of approaches, invited and contributed reviews and syntheses, and techniques for communicating and teaching in the aquatic sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信