{"title":"Dynamics of Interacting Monomial Scalar Field Potentials and Perfect Fluids","authors":"Artur Alho, Vitor Bessa, Filipe C. Mena","doi":"10.1007/s10884-023-10318-7","DOIUrl":null,"url":null,"abstract":"Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\\phi )=\\frac{(\\lambda \\phi )^{2n}}{2n}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>V</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mfrac> <mml:msup> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>λ</mml:mi> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:msup> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>n</mml:mi> </mml:mrow> </mml:mfrac> </mml:mrow> </mml:math> , $$\\lambda >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>λ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$n\\in {\\mathbb {N}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> </mml:mrow> </mml:math> , interacting with a perfect fluid with linear equation of state $$p_{\\textrm{pf}}=(\\gamma _{\\textrm{pf}}-1)\\rho _{\\textrm{pf}}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>p</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>=</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>-</mml:mo> <mml:mn>1</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> <mml:msub> <mml:mi>ρ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> </mml:mrow> </mml:math> , $$\\gamma _{\\textrm{pf}}\\in (0,2)$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:msub> <mml:mi>γ</mml:mi> <mml:mtext>pf</mml:mtext> </mml:msub> <mml:mo>∈</mml:mo> <mml:mrow> <mml:mo>(</mml:mo> <mml:mn>0</mml:mn> <mml:mo>,</mml:mo> <mml:mn>2</mml:mn> <mml:mo>)</mml:mo> </mml:mrow> </mml:mrow> </mml:math> , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\\Gamma (\\phi )=\\mu \\phi ^{2p}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>ϕ</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>=</mml:mo> <mml:mi>μ</mml:mi> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mn>2</mml:mn> <mml:mi>p</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> , $$\\mu >0$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>μ</mml:mi> <mml:mo>></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> </mml:math> , $$p\\in {\\mathbb {N}}\\cup \\{0\\}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>p</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>N</mml:mi> <mml:mo>∪</mml:mo> <mml:mo>{</mml:mo> <mml:mn>0</mml:mn> <mml:mo>}</mml:mo> </mml:mrow> </mml:math> . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.","PeriodicalId":15624,"journal":{"name":"Journal of Dynamics and Differential Equations","volume":"1 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamics and Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10884-023-10318-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Motivated by cosmological models of the early universe we analyse the dynamics of the Einstein equations with a minimally coupled scalar field with monomial potentials $$V(\phi )=\frac{(\lambda \phi )^{2n}}{2n}$$ V(ϕ)=(λϕ)2n2n , $$\lambda >0$$ λ>0 , $$n\in {\mathbb {N}}$$ n∈N , interacting with a perfect fluid with linear equation of state $$p_{\textrm{pf}}=(\gamma _{\textrm{pf}}-1)\rho _{\textrm{pf}}$$ ppf=(γpf-1)ρpf , $$\gamma _{\textrm{pf}}\in (0,2)$$ γpf∈(0,2) , in flat Robertson–Walker spacetimes. The interaction is a friction-like term of the form $$\Gamma (\phi )=\mu \phi ^{2p}$$ Γ(ϕ)=μϕ2p , $$\mu >0$$ μ>0 , $$p\in {\mathbb {N}}\cup \{0\}$$ p∈N∪{0} . The analysis relies on the introduction of a new regular 3-dimensional dynamical systems’ formulation of the Einstein equations on a compact state space, and the use of dynamical systems’ tools such as quasi-homogeneous blow-ups and averaging methods involving a time-dependent perturbation parameter.
期刊介绍:
Journal of Dynamics and Differential Equations serves as an international forum for the publication of high-quality, peer-reviewed original papers in the field of mathematics, biology, engineering, physics, and other areas of science. The dynamical issues treated in the journal cover all the classical topics, including attractors, bifurcation theory, connection theory, dichotomies, stability theory and transversality, as well as topics in new and emerging areas of the field.