{"title":"Magnetic structures and correlated physical properties in antiperovskites","authors":"Sihao Deng, Hongde Wang, Lunhua He, Cong Wang","doi":"10.20517/microstructures.2023.42","DOIUrl":null,"url":null,"abstract":"Compounds with perovskite structures have become one of the focuses in both materials science and condensed matter physics because of their fascinating physical properties and potential functionalities correlated to magnetic structures. However, the understanding of the intriguing physical properties is still at an exploratory stage. Herein, owing to the magnetic frustration prompted by Mn6N or Mn6C octahedra, the abounding magnetic structures of antiperovskites, including collinear antiferromagnetic, collinear ferromagnetic, collinear ferrimagnetic, non-collinear magnetic, and non-coplanar magnetic spin configurations, are systematically introduced through the updated coverage. In addition, owing to the “spin-lattice-charge” coupling of antiperovskites, a large number of physical properties, such as anomalous thermal expansion, giant magnetoresistance, anomalous Hall effect, piezomagnetic/baromagnetic effects, magnetocaloric effect, barocaloric effect, etc ., are summarized by combining the discussions of the determined magnetic structures. This review aims to clarify the current research progress in this field, focusing on the relationship between the magnetic structures and the correlated physical properties, and provides the conclusion and outlook on further performance optimization and mechanism exploration in antiperovskites.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.42","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
Compounds with perovskite structures have become one of the focuses in both materials science and condensed matter physics because of their fascinating physical properties and potential functionalities correlated to magnetic structures. However, the understanding of the intriguing physical properties is still at an exploratory stage. Herein, owing to the magnetic frustration prompted by Mn6N or Mn6C octahedra, the abounding magnetic structures of antiperovskites, including collinear antiferromagnetic, collinear ferromagnetic, collinear ferrimagnetic, non-collinear magnetic, and non-coplanar magnetic spin configurations, are systematically introduced through the updated coverage. In addition, owing to the “spin-lattice-charge” coupling of antiperovskites, a large number of physical properties, such as anomalous thermal expansion, giant magnetoresistance, anomalous Hall effect, piezomagnetic/baromagnetic effects, magnetocaloric effect, barocaloric effect, etc ., are summarized by combining the discussions of the determined magnetic structures. This review aims to clarify the current research progress in this field, focusing on the relationship between the magnetic structures and the correlated physical properties, and provides the conclusion and outlook on further performance optimization and mechanism exploration in antiperovskites.
期刊介绍:
Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover:
• Novel micro and nanostructures
• Nanomaterials (nanowires, nanodots, 2D materials ) and devices
• Synthetic heterostructures
• Plasmonics
• Micro and nano-defects in materials (semiconductor, metal and insulators)
• Surfaces and interfaces of thin films
In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board.
Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4