Contribution Assessment of Northern Hemispheric Atmospheric Circulations to Korean Mid-Summer Surface Warming by the Atmospheric Nudging Experiment

IF 2.2 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Min-Hee Lee, El Noh, Joo-Hong Kim, Joowan Kim, Sang-Yoon Jun
{"title":"Contribution Assessment of Northern Hemispheric Atmospheric Circulations to Korean Mid-Summer Surface Warming by the Atmospheric Nudging Experiment","authors":"Min-Hee Lee,&nbsp;El Noh,&nbsp;Joo-Hong Kim,&nbsp;Joowan Kim,&nbsp;Sang-Yoon Jun","doi":"10.1007/s13143-023-00339-z","DOIUrl":null,"url":null,"abstract":"<div><p>Anomalous surface warming in Korea has been explained by the high-pressure anomaly accompanied by the vertical sinking motion and weakening of westerlies at the exit of the East Asian Jet. The large-scale circulations linked to this high pressure over East Asia are characterized by the low pressure over the Arctic (AC) and the high pressure over Western Europe (WE), East Asia, and the North Pacific (NP). To assess the contribution of these circulation anomalies to the hot summer in Korea, the four nudging experiments (AC, NP, AC + NP, and WE) are applied to the simulations with 50 different initial conditions in July. As a result, the most similar patterns on local and hemispheric scales are found in the AC + NP nudging experiment. However, the near-surface response in the AC + NP is still weak, and its center shifts to the north compared to the observed, which is induced by the weaker diabatic contribution for the downward motion in the nudging experiment. Using the quasi-geostrophic omega equation, we find that the simulated radiative feedback process is not sufficient to build up the large-scale subsidence with the short nudging period. Despite this limitation, AC + NP well simulates the coherent sinking motion and high-pressure system near Korea by the vorticity advection associated with the upper-level westerlies. It implies that the contribution of the North Pacific circulation (a downstream region) should also be considered to reasonably simulate the East Asia surface warming along with those in the upstream regions.</p></div>","PeriodicalId":8556,"journal":{"name":"Asia-Pacific Journal of Atmospheric Sciences","volume":"60 2","pages":"119 - 130"},"PeriodicalIF":2.2000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13143-023-00339-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal of Atmospheric Sciences","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s13143-023-00339-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Anomalous surface warming in Korea has been explained by the high-pressure anomaly accompanied by the vertical sinking motion and weakening of westerlies at the exit of the East Asian Jet. The large-scale circulations linked to this high pressure over East Asia are characterized by the low pressure over the Arctic (AC) and the high pressure over Western Europe (WE), East Asia, and the North Pacific (NP). To assess the contribution of these circulation anomalies to the hot summer in Korea, the four nudging experiments (AC, NP, AC + NP, and WE) are applied to the simulations with 50 different initial conditions in July. As a result, the most similar patterns on local and hemispheric scales are found in the AC + NP nudging experiment. However, the near-surface response in the AC + NP is still weak, and its center shifts to the north compared to the observed, which is induced by the weaker diabatic contribution for the downward motion in the nudging experiment. Using the quasi-geostrophic omega equation, we find that the simulated radiative feedback process is not sufficient to build up the large-scale subsidence with the short nudging period. Despite this limitation, AC + NP well simulates the coherent sinking motion and high-pressure system near Korea by the vorticity advection associated with the upper-level westerlies. It implies that the contribution of the North Pacific circulation (a downstream region) should also be considered to reasonably simulate the East Asia surface warming along with those in the upstream regions.

Abstract Image

大气推移实验对北半球大气环流对韩国仲夏地表变暖的贡献评估
韩国地表异常变暖的原因是东亚喷流出口处西风的垂直下沉运动和减弱所伴随的高压异常。与东亚上空的高压相关联的大尺度环流的特征是北极上空的低压(AC)和西欧、东亚和北太平洋上空的高压(NP)。为了评估这些环流异常对韩国炎热夏季的影响,在 7 月模拟 50 种不同初始条件时,采用了四种推移实验(AC、NP、AC + NP 和 WE)。结果发现,AC + NP 推移实验在局地和半球尺度上的模式最为相似。然而,AC + NP 的近地面响应仍然较弱,与观测结果相比,其中心向北偏移,这是由于挤压实验中的向下运动的二重贡献较弱所引起的。利用准地转欧米茄方程,我们发现模拟的辐射反馈过程不足以在短推移周期内形成大尺度下沉。尽管存在这种局限性,AC + NP 还是很好地模拟了韩国附近由高层西风涡度平流引起的连贯下沉运动和高压系统。这意味着还应该考虑北太平洋环流(下游地区)的贡献,以便与上游地区一起合理模拟东亚地表变暖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Asia-Pacific Journal of Atmospheric Sciences
Asia-Pacific Journal of Atmospheric Sciences 地学-气象与大气科学
CiteScore
5.50
自引率
4.30%
发文量
34
审稿时长
>12 weeks
期刊介绍: The Asia-Pacific Journal of Atmospheric Sciences (APJAS) is an international journal of the Korean Meteorological Society (KMS), published fully in English. It has started from 2008 by succeeding the KMS'' former journal, the Journal of the Korean Meteorological Society (JKMS), which published a total of 47 volumes as of 2011, in its time-honored tradition since 1965. Since 2008, the APJAS is included in the journal list of Thomson Reuters’ SCIE (Science Citation Index Expanded) and also in SCOPUS, the Elsevier Bibliographic Database, indicating the increased awareness and quality of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信