The Effects of Lithium on Proprioceptive Sensory Function and Nerve Conduction

IF 1.6 Q3 CLINICAL NEUROLOGY
NeuroSci Pub Date : 2023-10-20 DOI:10.3390/neurosci4040023
Kaitlyn E. Brock, Elizabeth R. Elliott, Alaina C. Taul, Artin Asadipooya, Devin Bocook, Tessa Burnette, Isha V. Chauhan, Bilal Chhadh, Ryan Crane, Ashley Glover, Joshua Griffith, JayLa A. Hudson, Hassan Kashif, Samuel O. Nwadialo, Devan M. Neely, Adel Nukic, Deep R. Patel, Gretchen L. Ruschman, Johnathan C. Sales, Terra Yarbrough, Robin L. Cooper
{"title":"The Effects of Lithium on Proprioceptive Sensory Function and Nerve Conduction","authors":"Kaitlyn E. Brock, Elizabeth R. Elliott, Alaina C. Taul, Artin Asadipooya, Devin Bocook, Tessa Burnette, Isha V. Chauhan, Bilal Chhadh, Ryan Crane, Ashley Glover, Joshua Griffith, JayLa A. Hudson, Hassan Kashif, Samuel O. Nwadialo, Devan M. Neely, Adel Nukic, Deep R. Patel, Gretchen L. Ruschman, Johnathan C. Sales, Terra Yarbrough, Robin L. Cooper","doi":"10.3390/neurosci4040023","DOIUrl":null,"url":null,"abstract":"Animals are exposed to lithium (Li+) in the natural environment as well as by contact with industrial sources and therapeutic treatments. Low levels of exposure over time and high volumes of acute levels can be harmful and even toxic. The following study examines the effect of high-volume acute levels of Li+ on sensory nerve function and nerve conduction. A proprioceptive nerve in the limbs of a marine crab (Callinectes sapidus) was used as a model to address the effects on stretch-activated channels (SACs) and evoked nerve conduction. The substitution of Li+ for Na+ in the bathing saline slowed nerve conduction rapidly; however, several minutes were required before the SACs in sensory endings were affected. The evoked compound action potential slowed in conduction and slightly decreased in amplitude, while the frequency of nerve activity with joint movement and chordotonal organ stretching significantly decreased. Both altered responses could be partially restored with the return of a Na+-containing saline. Long-term exposure to Li+ may alter the function of SACs in organisms related to proprioception and nerve conduction, but it remains to be investigated.","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"28 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci4040023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 1

Abstract

Animals are exposed to lithium (Li+) in the natural environment as well as by contact with industrial sources and therapeutic treatments. Low levels of exposure over time and high volumes of acute levels can be harmful and even toxic. The following study examines the effect of high-volume acute levels of Li+ on sensory nerve function and nerve conduction. A proprioceptive nerve in the limbs of a marine crab (Callinectes sapidus) was used as a model to address the effects on stretch-activated channels (SACs) and evoked nerve conduction. The substitution of Li+ for Na+ in the bathing saline slowed nerve conduction rapidly; however, several minutes were required before the SACs in sensory endings were affected. The evoked compound action potential slowed in conduction and slightly decreased in amplitude, while the frequency of nerve activity with joint movement and chordotonal organ stretching significantly decreased. Both altered responses could be partially restored with the return of a Na+-containing saline. Long-term exposure to Li+ may alter the function of SACs in organisms related to proprioception and nerve conduction, but it remains to be investigated.
锂对本体感觉功能及神经传导的影响
动物在自然环境中以及与工业来源和治疗方法的接触中暴露于锂(Li+)。低水平的长期暴露和高水平的急性暴露可能是有害的,甚至有毒的。下面的研究探讨了高容量急性水平的Li+对感觉神经功能和神经传导的影响。以海蟹(Callinectes sapidus)肢体本体感觉神经为模型,研究其对拉伸激活通道(SACs)和诱发神经传导的影响。沐浴盐水中Li+取代Na+使神经传导迅速减慢;然而,在感觉末梢的SACs受到影响之前,需要几分钟。诱发的复合动作电位传导减慢,幅度略有下降,关节运动和脊索器官伸展的神经活动频率明显下降。这两种改变的反应都可以通过返回含Na+的生理盐水部分恢复。长期暴露于Li+可能会改变生物体内与本体感觉和神经传导相关的SACs功能,但这一点仍有待进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信