{"title":"Geotextile protection of glacier: Observed and simulated impacts on energy and mass balance","authors":"Fei-Teng Wang, Shuang-Shuang Liu, Xing Wang, Hui-Lin Li, Chun-Hai Xu, Lin Wang, Yu-Ang Xue, Xiao-Ying Yue","doi":"10.1016/j.accre.2023.11.001","DOIUrl":null,"url":null,"abstract":"The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far. In the present study, using the snow cover model SNOWPACK, the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No. 1 (Chinese Tien Shan) was simulated between 12 July 2022 and 31 August 2022. The mass changes and the energy fluxes with and without material cover were compared. The results indicated that the geotextile covering reduced glacier ablation by approximately 68% compared to the ablation in the uncovered regions. The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%. Thermal insulation of the geotextile reduced the sensible heat flux by 15%. In addition, the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux. This cooling effect reduced the energy available for ablation by 20%. Consequently, only 37% of the energy was used for melting compared to that used in the uncovered regions (67%). Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045–0.090 m reduced the ice loss by approximately 68%–72%, and a further increase in the thickness of the geotextile cover led to little improvements. A higher temperature and greater wind speed increased glacier ablation, although their effects were small. When the precipitation was set to zero, it led to a significantly increased melt. Overall, the geotextile effectively protected the glacier tongue from rapid melting, and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.","PeriodicalId":48628,"journal":{"name":"Advances in Climate Change Research","volume":"2013 7","pages":"0"},"PeriodicalIF":6.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Climate Change Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.accre.2023.11.001","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The detailed physical processes involved in slowing glacier ablation by material cover remain poorly understood so far. In the present study, using the snow cover model SNOWPACK, the effect of geotextile cover on the energy and mass balance at the tongue of the Urumqi Glacier No. 1 (Chinese Tien Shan) was simulated between 12 July 2022 and 31 August 2022. The mass changes and the energy fluxes with and without material cover were compared. The results indicated that the geotextile covering reduced glacier ablation by approximately 68% compared to the ablation in the uncovered regions. The high solar reflectivity of the geotextile reduced the net short-wave radiation energy available for the melt by 45%. Thermal insulation of the geotextile reduced the sensible heat flux by 15%. In addition, the wet geotextile exerted a cooling effect through long-wave radiation and negative latent heat flux. This cooling effect reduced the energy available for ablation by 20%. Consequently, only 37% of the energy was used for melting compared to that used in the uncovered regions (67%). Sensitivity experiments revealed that the geotextile cover used at a thickness range of 0.045–0.090 m reduced the ice loss by approximately 68%–72%, and a further increase in the thickness of the geotextile cover led to little improvements. A higher temperature and greater wind speed increased glacier ablation, although their effects were small. When the precipitation was set to zero, it led to a significantly increased melt. Overall, the geotextile effectively protected the glacier tongue from rapid melting, and the observed results have provided inspiration for developing an effective and sustainable approach to protect the glaciers using geotextile cover.
期刊介绍:
Advances in Climate Change Research publishes scientific research and analyses on climate change and the interactions of climate change with society. This journal encompasses basic science and economic, social, and policy research, including studies on mitigation and adaptation to climate change.
Advances in Climate Change Research attempts to promote research in climate change and provide an impetus for the application of research achievements in numerous aspects, such as socioeconomic sustainable development, responses to the adaptation and mitigation of climate change, diplomatic negotiations of climate and environment policies, and the protection and exploitation of natural resources.