Exploring variations and temporal instability of factors affecting driver injury severities between different vehicle impact locations under adverse road surface conditions
IF 12.5 1区 工程技术Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
{"title":"Exploring variations and temporal instability of factors affecting driver injury severities between different vehicle impact locations under adverse road surface conditions","authors":"Qiaoqiao Ren, Min Xu","doi":"10.1016/j.amar.2023.100305","DOIUrl":null,"url":null,"abstract":"<div><p><span>The adverse road surface condition has been identified as an important factor resulting in serious casualties and property losses in traffic accidents, and there is a tremendous need to uncover the interaction mechanism between deteriorating road surfaces and vehicle impact locations on the driver injury severity at a disaggregate level. In this paper, three groups of random parameters logit models with heterogeneity in means (and variances) are developed to investigate the unobserved heterogeneity and temporal stability of the determinants affecting driver injury severity outcomes across different damage locations among single-vehicle crashes that occurred under adverse weather conditions. A three-year crash dataset gathered from January 1, 2015, to December 31, 2017, in Ohio is utilized. Three crash injury severity categories including no injury, minor injury, and severe injury are identified as outcome variables, while crash characteristics, driver characteristics, temporal characteristics, vehicle characteristics, roadway characteristics, and environment characteristics are regarded as potential predictors influencing driver injury severities. Additionally, </span>likelihood ratio tests<span> and marginal effects are used to assess the temporal instability and impact location non-transferability of the explanatory variables. The results indicate an overall temporal and locational instability of model estimates while several determinants are identified to have consistent effects on injury severity outcomes such as animal-involved collisions, old drivers, safety restraint usage, female drivers, physically impaired drivers, and vehicles with insurance. This study also quantifies and characterizes the net effect of year-to-year and location-to-location shifts through probability differences between out-of-sample predictions and within-sample observations. Varying magnitudes and inconsistent directions of distribution characteristics (mean, skewness, kurtosis, and prediction accuracy) in the probability differences across different impact locations over time are captured. Moreover, this study indicates that the non-transferability of collision locations has a greater impact on the prediction accuracy than the temporal instability. The findings could potentially serve as a reference for transportation administrators to formulate effective safety strategies to better protect drivers from adverse-road-related crashes.</span></p></div>","PeriodicalId":47520,"journal":{"name":"Analytic Methods in Accident Research","volume":"40 ","pages":"Article 100305"},"PeriodicalIF":12.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytic Methods in Accident Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213665723000404","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0
Abstract
The adverse road surface condition has been identified as an important factor resulting in serious casualties and property losses in traffic accidents, and there is a tremendous need to uncover the interaction mechanism between deteriorating road surfaces and vehicle impact locations on the driver injury severity at a disaggregate level. In this paper, three groups of random parameters logit models with heterogeneity in means (and variances) are developed to investigate the unobserved heterogeneity and temporal stability of the determinants affecting driver injury severity outcomes across different damage locations among single-vehicle crashes that occurred under adverse weather conditions. A three-year crash dataset gathered from January 1, 2015, to December 31, 2017, in Ohio is utilized. Three crash injury severity categories including no injury, minor injury, and severe injury are identified as outcome variables, while crash characteristics, driver characteristics, temporal characteristics, vehicle characteristics, roadway characteristics, and environment characteristics are regarded as potential predictors influencing driver injury severities. Additionally, likelihood ratio tests and marginal effects are used to assess the temporal instability and impact location non-transferability of the explanatory variables. The results indicate an overall temporal and locational instability of model estimates while several determinants are identified to have consistent effects on injury severity outcomes such as animal-involved collisions, old drivers, safety restraint usage, female drivers, physically impaired drivers, and vehicles with insurance. This study also quantifies and characterizes the net effect of year-to-year and location-to-location shifts through probability differences between out-of-sample predictions and within-sample observations. Varying magnitudes and inconsistent directions of distribution characteristics (mean, skewness, kurtosis, and prediction accuracy) in the probability differences across different impact locations over time are captured. Moreover, this study indicates that the non-transferability of collision locations has a greater impact on the prediction accuracy than the temporal instability. The findings could potentially serve as a reference for transportation administrators to formulate effective safety strategies to better protect drivers from adverse-road-related crashes.
期刊介绍:
Analytic Methods in Accident Research is a journal that publishes articles related to the development and application of advanced statistical and econometric methods in studying vehicle crashes and other accidents. The journal aims to demonstrate how these innovative approaches can provide new insights into the factors influencing the occurrence and severity of accidents, thereby offering guidance for implementing appropriate preventive measures. While the journal primarily focuses on the analytic approach, it also accepts articles covering various aspects of transportation safety (such as road, pedestrian, air, rail, and water safety), construction safety, and other areas where human behavior, machine failures, or system failures lead to property damage or bodily harm.