On generalization of Petryshyn's fixed point theorem and its application to the product of $ n $-nonlinear integral equations

IF 1.8 3区 数学 Q1 MATHEMATICS
Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali
{"title":"On generalization of Petryshyn's fixed point theorem and its application to the product of $ n $-nonlinear integral equations","authors":"Ateq Alsaadi, Manochehr Kazemi, Mohamed M. A. Metwali","doi":"10.3934/math.20231562","DOIUrl":null,"url":null,"abstract":"<abstract><p>Regarding the Hausdorff measure of noncompactness, we provide and demonstrate a generalization of Petryshyn's fixed point theorem in Banach algebras. Comparing this theorem to Schauder and Darbo's fixed point theorems, we can skip demonstrating closed, convex and compactness properties of the investigated operators. We employ our fixed point theorem to provide the existence findings for the product of $ n $-nonlinear integral equations in the Banach algebra of continuous functions $ C(I_a) $, which is a generalization of various types of integral equations in the literature. Lastly, a few specific instances and informative examples are provided. Our findings can successfully be extended to several Banach algebras, including $ AC, C^1 $ or $ BV $-spaces.</p></abstract>","PeriodicalId":48562,"journal":{"name":"AIMS Mathematics","volume":"137 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/math.20231562","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Regarding the Hausdorff measure of noncompactness, we provide and demonstrate a generalization of Petryshyn's fixed point theorem in Banach algebras. Comparing this theorem to Schauder and Darbo's fixed point theorems, we can skip demonstrating closed, convex and compactness properties of the investigated operators. We employ our fixed point theorem to provide the existence findings for the product of $ n $-nonlinear integral equations in the Banach algebra of continuous functions $ C(I_a) $, which is a generalization of various types of integral equations in the literature. Lastly, a few specific instances and informative examples are provided. Our findings can successfully be extended to several Banach algebras, including $ AC, C^1 $ or $ BV $-spaces.

Petryshyn不动点定理的推广及其在n -非线性积分方程积中的应用
关于非紧性的Hausdorff测度,给出并证明了Banach代数中Petryshyn不动点定理的推广。与Schauder和Darbo的不动点定理相比,我们可以跳过证明所研究算子的闭性、凸性和紧性。本文利用不动点定理,给出了连续函数C(I_a) $的Banach代数中$ n $-非线性积分方程积的存在性发现,这是对文献中各种类型积分方程的推广。最后,给出了一些具体的实例和有益的例子。我们的发现可以成功地推广到几个Banach代数,包括$ AC, C^1 $或$ BV $-spaces.</ </abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIMS Mathematics
AIMS Mathematics Mathematics-General Mathematics
CiteScore
3.40
自引率
13.60%
发文量
769
审稿时长
90 days
期刊介绍: AIMS Mathematics is an international Open Access journal devoted to publishing peer-reviewed, high quality, original papers in all fields of mathematics. We publish the following article types: original research articles, reviews, editorials, letters, and conference reports.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信