Michael J. Duncan, Lucas Guimaraes-Ferreira, Jason Tallis, Irineu Loturco, Anthony Weldon, Rohit K. Thapa
{"title":"Determining and comparing the optimum power loads in hexagonal and straight bar deadlifts in novice strength-trained males","authors":"Michael J. Duncan, Lucas Guimaraes-Ferreira, Jason Tallis, Irineu Loturco, Anthony Weldon, Rohit K. Thapa","doi":"10.2478/bhk-2023-0027","DOIUrl":null,"url":null,"abstract":"Abstract Study aim : This study aimed to determine and compare the ‘optimum power load’ in the hexagonal (HBDL) and straight (SBDL) bar deadlift exercises. Material and methods : Fifteen novice strength-trained males performed three repetitions of the HBDL and SBDL at loads from 20–90% of their one-repetition maximum (1RM). Peak power, average power, peak velocity, and average velocity were determined from each repetition using a velocity-based linear position transducer. Results : Repeated measures ANOVA revealed a significant effect of load for HBDL and SBDL (all p < 0.001). Post-hoc analyses revealed peak power outputs for HBDL were similar across 50–90% 1RM, with the highest peak power recorded at 80% 1RM (1053 W). The peak power outputs for SBDL were similar across 40–90% 1RM, with the highest peak power recorded at 90% 1RM (843 W). A paired sample t-test revealed that HBDL showed greater peak power at 60% (Hedges’ g effect size g = 0.53), average power at 50–70%, (g = 0.56–0.74), and average velocity at 50% of 1RM (g = 0.53). However, SBDL showed greater peak velocity at 20% (g = 0.52) and average velocity at 90% of 1RM (g = 0.44). Conclusion : Practitioners can use these determined loads to target peak power and peak velocity outputs for the HBDL and SBDL exercises (e.g., 50–90% 1RM in HBDL). The HBDL may offer additional advantages resulting in greater peak power and average power outputs than the SBDL.","PeriodicalId":44223,"journal":{"name":"Biomedical Human Kinetics","volume":"43 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical Human Kinetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/bhk-2023-0027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Study aim : This study aimed to determine and compare the ‘optimum power load’ in the hexagonal (HBDL) and straight (SBDL) bar deadlift exercises. Material and methods : Fifteen novice strength-trained males performed three repetitions of the HBDL and SBDL at loads from 20–90% of their one-repetition maximum (1RM). Peak power, average power, peak velocity, and average velocity were determined from each repetition using a velocity-based linear position transducer. Results : Repeated measures ANOVA revealed a significant effect of load for HBDL and SBDL (all p < 0.001). Post-hoc analyses revealed peak power outputs for HBDL were similar across 50–90% 1RM, with the highest peak power recorded at 80% 1RM (1053 W). The peak power outputs for SBDL were similar across 40–90% 1RM, with the highest peak power recorded at 90% 1RM (843 W). A paired sample t-test revealed that HBDL showed greater peak power at 60% (Hedges’ g effect size g = 0.53), average power at 50–70%, (g = 0.56–0.74), and average velocity at 50% of 1RM (g = 0.53). However, SBDL showed greater peak velocity at 20% (g = 0.52) and average velocity at 90% of 1RM (g = 0.44). Conclusion : Practitioners can use these determined loads to target peak power and peak velocity outputs for the HBDL and SBDL exercises (e.g., 50–90% 1RM in HBDL). The HBDL may offer additional advantages resulting in greater peak power and average power outputs than the SBDL.
期刊介绍:
The leading idea is the health-directed quality of life. The journal thus covers many biomedical areas related to physical activity, e.g. physiology, biochemistry, biomechanics, anthropology, medical issues associated with physical activities, physical and motor development, psychological and sociological issues associated with physical activities, rehabilitation, health-related sport issues and fitness, etc.