Dual solutions for nanofluid flow past a moving plate embedded in a Darcy porous medium in attendance of heat source/sink

IF 2.6 4区 物理与天体物理 Q2 PHYSICS, APPLIED
Hiranmoy Maiti, Samir Kumar Nandy, Swati Mukhopadhyay
{"title":"Dual solutions for nanofluid flow past a moving plate embedded in a Darcy porous medium in attendance of heat source/sink","authors":"Hiranmoy Maiti, Samir Kumar Nandy, Swati Mukhopadhyay","doi":"10.1142/s0217979224503697","DOIUrl":null,"url":null,"abstract":"The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].","PeriodicalId":14108,"journal":{"name":"International Journal of Modern Physics B","volume":"19 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0217979224503697","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The aim of this study is to present forced convective nanofluid flow over a moving plate embedded in an absorbent medium. Following Darcy law’s for porous medium, the flow analysis is explored in attendance of warmth basis/drop. The main objective of this study is to explore the effects of Brownian motion and thermophoresis. The plate is considered to move in both directions: in the way of movement of fluid and in the opposite route of fluid movement. Similarity alterations have been applied to alter the leading partial differential equations (PDEs) to ordinary differential equations (ODEs). Numerical solutions have been obtained with the help of MATHEMATICA software. Dual solutions have been obtained when the plate and liquid go in reverse ways. Wall shear stress, Nusselt and Sherwood numbers all are found to rise with the rising permeability parameter of absorbent medium. For Nusselt and Sherwood numbers, ranges of dual solutions diminish by the mounting values of permeability parameter K. The critical values for porosity parameter [Formula: see text], 0.02, 0.03 are [Formula: see text], [Formula: see text], [Formula: see text], respectively. For decreasing values of s, range of dual solutions decreases. For [Formula: see text], dual solutions exist in the range [Formula: see text].
纳米流体在达西多孔介质中移动板上流动的双解
本研究的目的是呈现强制对流纳米流体流过嵌入在吸收介质中的移动板。根据多孔介质的达西定律,探讨了考虑热基/降的流动分析。本研究的主要目的是探讨布朗运动和热泳的影响。可以认为板块在两个方向上运动:沿流体运动的方向运动和沿流体运动的相反方向运动。相似度变化已被应用于将主导偏微分方程(PDEs)改为常微分方程(ode)。在MATHEMATICA软件的帮助下,得到了数值解。当平板和液体反向运动时,得到了双溶液。壁面剪应力、Nusselt数和Sherwood数均随吸水介质渗透率参数的增大而增大。对于Nusselt数和Sherwood数,对偶解的范围随着渗透率参数k的增大而减小。孔隙度参数[公式:见文]、0.02、0.03的临界值分别为[公式:见文]、[公式:见文]、[公式:见文]。随着s值的减小,对偶解的范围减小。对于[公式:见文],在[公式:见文]范围内存在对偶解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Modern Physics B
International Journal of Modern Physics B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
11.80%
发文量
417
审稿时长
3.1 months
期刊介绍: Launched in 1987, the International Journal of Modern Physics B covers the most important aspects and the latest developments in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low dimensional materials. One unique feature of this journal is its review section which contains articles with permanent research value besides the state-of-the-art research work in the relevant subject areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信