Using spatial point process models, clustering and space partitioning to reconfigure fire stations layout

IF 3.4 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Regina Bispo, Francisca G. Vieira, Clara Yokochi, Filipe J. Marques, Pedro Espadinha-Cruz, Alexandre Penha, António Grilo
{"title":"Using spatial point process models, clustering and space partitioning to reconfigure fire stations layout","authors":"Regina Bispo, Francisca G. Vieira, Clara Yokochi, Filipe J. Marques, Pedro Espadinha-Cruz, Alexandre Penha, António Grilo","doi":"10.1007/s41060-023-00455-z","DOIUrl":null,"url":null,"abstract":"Abstract Fire stations (FS) are typically non-uniformly distributed across space, and their service area is, in general, defined based on administrative boundaries. Since the location of FS may considerably influence the readiness and the effectiveness of the provided services, national and regional governments need research-based information to adequately plan where to establish firefighting facilities. In this study, we propose a method to reconfigure the fire stations layout using spatial point process models, clustering and space partitioning. First, modelling fire intensity variation across space through a point process model enables to replicate the process independently by simulation. Subsequently, for each simulation, the k -means algorithm is used to define a siting location, minimizing the total within distance between the fire occurrences and the new position. This method allows to obtain a set of locations from which the respective distribution is inferred. Assuming a bivariate normal spatial distribution, we further define confidence siting regions. Ultimately, new FS service areas are defined by Voronoi tessellation. To exemplify the application of the method, we apply it to reconfigure the fire station layout at Aveiro, Portugal.","PeriodicalId":45667,"journal":{"name":"International Journal of Data Science and Analytics","volume":"33 1","pages":"0"},"PeriodicalIF":3.4000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Science and Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41060-023-00455-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Fire stations (FS) are typically non-uniformly distributed across space, and their service area is, in general, defined based on administrative boundaries. Since the location of FS may considerably influence the readiness and the effectiveness of the provided services, national and regional governments need research-based information to adequately plan where to establish firefighting facilities. In this study, we propose a method to reconfigure the fire stations layout using spatial point process models, clustering and space partitioning. First, modelling fire intensity variation across space through a point process model enables to replicate the process independently by simulation. Subsequently, for each simulation, the k -means algorithm is used to define a siting location, minimizing the total within distance between the fire occurrences and the new position. This method allows to obtain a set of locations from which the respective distribution is inferred. Assuming a bivariate normal spatial distribution, we further define confidence siting regions. Ultimately, new FS service areas are defined by Voronoi tessellation. To exemplify the application of the method, we apply it to reconfigure the fire station layout at Aveiro, Portugal.
利用空间点过程模型、聚类和空间划分对消防站布局进行重新配置
摘要消防站在空间上的分布是非均匀的,其服务区域一般是根据行政边界来界定的。由于消防设施的位置可能在很大程度上影响所提供服务的准备情况和有效性,国家和地区政府需要基于研究的信息,以充分规划在何处建立消防设施。本文提出了一种基于空间点过程模型、聚类和空间划分的消防站布局重构方法。首先,通过点过程模型模拟火灾强度在空间上的变化,可以通过模拟独立地复制该过程。随后,对于每个模拟,使用k -means算法定义一个选址位置,最小化火灾发生与新位置之间的总距离。此方法允许获得一组位置,从中推断各自的分布。假设二元正态空间分布,进一步定义置信度定位区域。最终,新的FS服务领域由Voronoi镶嵌定义。为了说明该方法的应用,我们将其应用于葡萄牙阿威罗的消防站布局的重新配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
8.30%
发文量
72
期刊介绍: Data Science has been established as an important emergent scientific field and paradigm driving research evolution in such disciplines as statistics, computing science and intelligence science, and practical transformation in such domains as science, engineering, the public sector, business, social sci­ence, and lifestyle. The field encompasses the larger ar­eas of artificial intelligence, data analytics, machine learning, pattern recognition, natural language understanding, and big data manipulation. It also tackles related new sci­entific chal­lenges, ranging from data capture, creation, storage, retrieval, sharing, analysis, optimization, and vis­ualization, to integrative analysis across heterogeneous and interdependent complex resources for better decision-making, collaboration, and, ultimately, value creation.The International Journal of Data Science and Analytics (JDSA) brings together thought leaders, researchers, industry practitioners, and potential users of data science and analytics, to develop the field, discuss new trends and opportunities, exchange ideas and practices, and promote transdisciplinary and cross-domain collaborations. The jour­nal is composed of three streams: Regular, to communicate original and reproducible theoretical and experimental findings on data science and analytics; Applications, to report the significant data science applications to real-life situations; and Trends, to report expert opinion and comprehensive surveys and reviews of relevant areas and topics in data science and analytics.Topics of relevance include all aspects of the trends, scientific foundations, techniques, and applica­tions of data science and analytics, with a primary focus on:statistical and mathematical foundations for data science and analytics;understanding and analytics of complex data, human, domain, network, organizational, social, behavior, and system characteristics, complexities and intelligences;creation and extraction, processing, representation and modelling, learning and discovery, fusion and integration, presentation and visualization of complex data, behavior, knowledge and intelligence;data analytics, pattern recognition, knowledge discovery, machine learning, deep analytics and deep learning, and intelligent processing of various data (including transaction, text, image, video, graph and network), behaviors and systems;active, real-time, personalized, actionable and automated analytics, learning, computation, optimization, presentation and recommendation; big data architecture, infrastructure, computing, matching, indexing, query processing, mapping, search, retrieval, interopera­bility, exchange, and recommendation;in-memory, distributed, parallel, scalable and high-performance computing, analytics and optimization for big data;review, surveys, trends, prospects and opportunities of data science research, innovation and applications;data science applications, intelligent devices and services in scientific, business, governmental, cultural, behavioral, social and economic, health and medical, human, natural and artificial (including online/Web, cloud, IoT, mobile and social media) domains; andethics, quality, privacy, safety and security, trust, and risk of data science and analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信