{"title":"Photonic spin Hall effect: Physics, manipulations, and applications","authors":"Lijuan Sheng , Yu Chen , Shuaijie Yuan , Xuquan Liu , Zhiyou Zhang , Hui Jing , Le-Man Kuang , Xinxing Zhou","doi":"10.1016/j.pquantelec.2023.100484","DOIUrl":null,"url":null,"abstract":"<div><p><span>The photonic spin </span>Hall effect<span> (PSHE), as an exotic analogy to the spin Hall effect in electronics, is induced by the spin-orbit interaction of light and manifests itself as a spin-related splitting of left- and right-handed circularly polarized beams. Recently, the PSHE has been revealed and explored in a wide range of fields such as optical interfaces, metasurfaces/metamaterials, near-field optics, topological and disordered systems, as well as non-Hermitian photonics. Significantly, the PSHE provides the unique spin degrees of freedom to flexibly control light, which has enabled tremendous applications in precise metrology, spin-based nanophotonic<span> devices, and mathematical operations, to name only a few. Also, new methods to manipulate and enhance this effect have been actively pursued. Here, we provide a comprehensive review of the key aspects in the PSHE, especially the underlying physics, new techniques of manipulations, and emerging applications. Our review can not only help new researchers of this field in a timely manner but also inspire more efforts in making and engineering PSHE-based devices in coming years.</span></span></p></div>","PeriodicalId":414,"journal":{"name":"Progress in Quantum Electronics","volume":"91 ","pages":"Article 100484"},"PeriodicalIF":7.4000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Quantum Electronics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0079672723000332","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The photonic spin Hall effect (PSHE), as an exotic analogy to the spin Hall effect in electronics, is induced by the spin-orbit interaction of light and manifests itself as a spin-related splitting of left- and right-handed circularly polarized beams. Recently, the PSHE has been revealed and explored in a wide range of fields such as optical interfaces, metasurfaces/metamaterials, near-field optics, topological and disordered systems, as well as non-Hermitian photonics. Significantly, the PSHE provides the unique spin degrees of freedom to flexibly control light, which has enabled tremendous applications in precise metrology, spin-based nanophotonic devices, and mathematical operations, to name only a few. Also, new methods to manipulate and enhance this effect have been actively pursued. Here, we provide a comprehensive review of the key aspects in the PSHE, especially the underlying physics, new techniques of manipulations, and emerging applications. Our review can not only help new researchers of this field in a timely manner but also inspire more efforts in making and engineering PSHE-based devices in coming years.
期刊介绍:
Progress in Quantum Electronics, established in 1969, is an esteemed international review journal dedicated to sharing cutting-edge topics in quantum electronics and its applications. The journal disseminates papers covering theoretical and experimental aspects of contemporary research, including advances in physics, technology, and engineering relevant to quantum electronics. It also encourages interdisciplinary research, welcoming papers that contribute new knowledge in areas such as bio and nano-related work.