Izzati Saleh, Azwati Azmin, Azan Yunus, Wan Rahiman
{"title":"Analysis of Pure-pursuit Algorithm Parameters for Nonholonomic Mobile Robot Navigation in Unstructured and Confined Space","authors":"Izzati Saleh, Azwati Azmin, Azan Yunus, Wan Rahiman","doi":"10.47836/pjst.32.1.06","DOIUrl":null,"url":null,"abstract":"This research analyses Pure-pursuit algorithm parameters for nonholonomic mobile robot navigation in unstructured and constrained space. The simulation-based experiment is limited to the mobile robot arrangement. The Look Ahead Distance parameter is adjusted so the mobile robot can navigate the predefined map closely following the waypoints. The optimal Look Ahead Distance value is combined with the VFH+ algorithm for obstacle avoidance. The method is enhanced by adding the λ weight so the robot returns to its waypoints after avoiding an obstacle. The investigation reveals that λ influences the mobile robot’s capacity to return to its predetermined waypoints after avoiding an obstacle. Based on the simulation experiment, the optimal LAD value is 0.2m, and the optimal λ value is 0.8.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.32.1.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This research analyses Pure-pursuit algorithm parameters for nonholonomic mobile robot navigation in unstructured and constrained space. The simulation-based experiment is limited to the mobile robot arrangement. The Look Ahead Distance parameter is adjusted so the mobile robot can navigate the predefined map closely following the waypoints. The optimal Look Ahead Distance value is combined with the VFH+ algorithm for obstacle avoidance. The method is enhanced by adding the λ weight so the robot returns to its waypoints after avoiding an obstacle. The investigation reveals that λ influences the mobile robot’s capacity to return to its predetermined waypoints after avoiding an obstacle. Based on the simulation experiment, the optimal LAD value is 0.2m, and the optimal λ value is 0.8.
期刊介绍:
Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.