TOPOLOGY INDEX OF THE COPRIME GRAPH FOR DIHEDRAL GROUP OF PRIME POWER ORDER

Marena Rahayu Gayatri, Rifdah Fadhilah, Sahin Two Lestari, Lia Fitta Pratiwi, Abdurahim Abdurahim, I Gede Adhitya Wisnu Wardhana
{"title":"TOPOLOGY INDEX OF THE COPRIME GRAPH FOR DIHEDRAL GROUP OF PRIME POWER ORDER","authors":"Marena Rahayu Gayatri, Rifdah Fadhilah, Sahin Two Lestari, Lia Fitta Pratiwi, Abdurahim Abdurahim, I Gede Adhitya Wisnu Wardhana","doi":"10.35508/jd.v5i2.12462","DOIUrl":null,"url":null,"abstract":"In the field of molecular chemistry, graph theory is utilized to represent the structure of a molecule, where the set of nodes corresponds to its chemical elements and the set of edges represents the bonds within the chemical molecule. Graph theory, a mathematical discipline, finds application in various domains, one of which is group representation. This research will delve into the topic of the topological indices of the coprime graph of dihedral groups. The methodology employed involves reviewing several references related to dihedral groups, coprime graphs, and topological indices. This study yields results in the form of Harmonic index, Harary index, first Zagreb index, Gutman index, and Wiener index.","PeriodicalId":491653,"journal":{"name":"Jurnal Diferensial","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Diferensial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35508/jd.v5i2.12462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the field of molecular chemistry, graph theory is utilized to represent the structure of a molecule, where the set of nodes corresponds to its chemical elements and the set of edges represents the bonds within the chemical molecule. Graph theory, a mathematical discipline, finds application in various domains, one of which is group representation. This research will delve into the topic of the topological indices of the coprime graph of dihedral groups. The methodology employed involves reviewing several references related to dihedral groups, coprime graphs, and topological indices. This study yields results in the form of Harmonic index, Harary index, first Zagreb index, Gutman index, and Wiener index.
素幂次二面体群的素图拓扑指标
在分子化学领域,图论被用来表示分子的结构,其中一组节点对应于它的化学元素,一组边代表化学分子内的键。图论是一门数学学科,在许多领域都有应用,其中之一就是群表示。本研究将探讨二面体群的素图的拓扑指标。所采用的方法包括回顾与二面体群、素图和拓扑指标相关的几个参考文献。本研究以Harmonic指数、Harary指数、first Zagreb指数、Gutman指数和Wiener指数的形式得出结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信