On a multi-parameter variant of the Bellow–Furstenberg problem

IF 2.8 1区 数学 Q1 MATHEMATICS
Jean Bourgain, Mariusz Mirek, Elias M. Stein, James Wright
{"title":"On a multi-parameter variant of the Bellow–Furstenberg problem","authors":"Jean Bourgain, Mariusz Mirek, Elias M. Stein, James Wright","doi":"10.1017/fmp.2023.21","DOIUrl":null,"url":null,"abstract":"Abstract We prove convergence in norm and pointwise almost everywhere on $L^p$ , $p\\in (1,\\infty )$ , for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.","PeriodicalId":56024,"journal":{"name":"Forum of Mathematics Pi","volume":"65 1","pages":"0"},"PeriodicalIF":2.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forum of Mathematics Pi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/fmp.2023.21","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 8

Abstract

Abstract We prove convergence in norm and pointwise almost everywhere on $L^p$ , $p\in (1,\infty )$ , for certain multi-parameter polynomial ergodic averages by establishing the corresponding multi-parameter maximal and oscillation inequalities. Our result, in particular, gives an affirmative answer to a multi-parameter variant of the Bellow–Furstenberg problem. This paper is also the first systematic treatment of multi-parameter oscillation semi-norms which allows an efficient handling of multi-parameter pointwise convergence problems with arithmetic features. The methods of proof of our main result develop estimates for multi-parameter exponential sums, as well as introduce new ideas from the so-called multi-parameter circle method in the context of the geometry of backwards Newton diagrams that are dictated by the shape of the polynomials defining our ergodic averages.
关于Bellow-Furstenberg问题的一个多参数变体
通过建立相应的多参数极大和振荡不等式,在$L^p$, $p\in (1,\infty )$上证明了某些多参数多项式遍历平均几乎处处的范数收敛性和点向收敛性。我们的结果,特别地,给出了一个肯定的答案,一个多参数的贝罗-弗斯滕伯格问题的变体。本文也首次系统地处理了多参数振荡半规范,使多参数带算术特征的点向收敛问题得到了有效的处理。我们主要结果的证明方法发展了多参数指数和的估计,并在由定义遍历平均的多项式的形状决定的向后牛顿图的几何背景下引入了所谓的多参数圆方法的新思想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Forum of Mathematics Pi
Forum of Mathematics Pi Mathematics-Statistics and Probability
CiteScore
3.50
自引率
0.00%
发文量
21
审稿时长
19 weeks
期刊介绍: Forum of Mathematics, Pi is the open access alternative to the leading generalist mathematics journals and are of real interest to a broad cross-section of all mathematicians. Papers published are of the highest quality. Forum of Mathematics, Pi and Forum of Mathematics, Sigma are an exciting new development in journal publishing. Together they offer fully open access publication combined with peer-review standards set by an international editorial board of the highest calibre, and all backed by Cambridge University Press and our commitment to quality. Strong research papers from all parts of pure mathematics and related areas are welcomed. All published papers are free online to readers in perpetuity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信