Synthetic Strategies for Vitamin-loaded Carbon Dots and their Detection using Biosensors: A Review

IF 1.4 4区 材料科学 Q4 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Himanshu Chaudhrya, Naresh K. Rangraa, Pooja A. Chawlaa
{"title":"Synthetic Strategies for Vitamin-loaded Carbon Dots and their Detection using Biosensors: A Review","authors":"Himanshu Chaudhrya, Naresh K. Rangraa, Pooja A. Chawlaa","doi":"10.2174/0115734137252527230919110809","DOIUrl":null,"url":null,"abstract":"Abstract: Carbon dots belong to the class of nanomaterials invented accidentally and are attracting a lot of attention these days. Carbon dots are non-toxic, photostable, and easy-to-synthesize nano formulations having good water-soluble properties when treated chemically by manipulating surface active groups, followed by the addition of solubilizing agents and size reduction. These are widely used in bioimaging, electrochemical sensing, targeted drug delivery, and other biomedical activities. In recent years, significant attempts have been emphasized by analysts to the detection of vitamins embedded carbon dots using biosensors. The biosensing of vitamins has become easy due to the luminescence property of carbon dots, which makes them easy to detect. Therefore, in this review, we have reported synthetic strategies and recent biosensorbased detection techniques used in the analysis of vitamin-loaded carbon dots. Even from the carbon dot’s analytical perspective, there is still a lot of research needed in the area of biosensing, bioimaging, and healthcare applications. Unique features, along with the controllable synthesis methods, will lead to a bright future in the detection and characterization of drugs using carbon dots.","PeriodicalId":10827,"journal":{"name":"Current Nanoscience","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Nanoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0115734137252527230919110809","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Carbon dots belong to the class of nanomaterials invented accidentally and are attracting a lot of attention these days. Carbon dots are non-toxic, photostable, and easy-to-synthesize nano formulations having good water-soluble properties when treated chemically by manipulating surface active groups, followed by the addition of solubilizing agents and size reduction. These are widely used in bioimaging, electrochemical sensing, targeted drug delivery, and other biomedical activities. In recent years, significant attempts have been emphasized by analysts to the detection of vitamins embedded carbon dots using biosensors. The biosensing of vitamins has become easy due to the luminescence property of carbon dots, which makes them easy to detect. Therefore, in this review, we have reported synthetic strategies and recent biosensorbased detection techniques used in the analysis of vitamin-loaded carbon dots. Even from the carbon dot’s analytical perspective, there is still a lot of research needed in the area of biosensing, bioimaging, and healthcare applications. Unique features, along with the controllable synthesis methods, will lead to a bright future in the detection and characterization of drugs using carbon dots.
含维生素碳点的合成策略及其生物传感器检测综述
摘要:碳点属于偶然发明的一类纳米材料,近年来引起了人们的广泛关注。碳点是一种无毒、光稳定、易于合成的纳米配方,通过控制表面活性基团,然后添加增溶剂和缩小尺寸进行化学处理,具有良好的水溶性。它们广泛应用于生物成像、电化学传感、靶向药物传递和其他生物医学活动。近年来,利用生物传感器对嵌入碳点的维生素进行检测,受到了分析人士的重视。碳点的发光特性使其易于检测,从而使维生素的生物传感变得容易。因此,在这篇综述中,我们报道了合成策略和最近基于生物传感器的检测技术用于分析维生素负载碳点。即使从碳点的分析角度来看,在生物传感、生物成像和医疗保健应用领域仍有大量的研究需要进行。独特的特性,加上可控的合成方法,将在利用碳点检测和表征药物方面带来光明的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Nanoscience
Current Nanoscience 工程技术-材料科学:综合
CiteScore
3.50
自引率
6.70%
发文量
83
审稿时长
4.4 months
期刊介绍: Current Nanoscience publishes (a) Authoritative/Mini Reviews, and (b) Original Research and Highlights written by experts covering the most recent advances in nanoscience and nanotechnology. All aspects of the field are represented including nano-structures, nano-bubbles, nano-droplets and nanofluids. Applications of nanoscience in physics, material science, chemistry, synthesis, environmental science, electronics, biomedical nanotechnology, biomedical engineering, biotechnology, medicine and pharmaceuticals are also covered. The journal is essential to all researches involved in nanoscience and its applied and fundamental areas of science, chemistry, physics, material science, engineering and medicine. Current Nanoscience also welcomes submissions on the following topics of Nanoscience and Nanotechnology: Nanoelectronics and photonics Advanced Nanomaterials Nanofabrication and measurement Nanobiotechnology and nanomedicine Nanotechnology for energy Sensors and actuator Computational nanoscience and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信