Exploring Self-Attention for Visual Intersection Classification

IF 0.7 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Haruki Nakata, Kanji Tanaka, Koji Takeda
{"title":"Exploring Self-Attention for Visual Intersection Classification","authors":"Haruki Nakata, Kanji Tanaka, Koji Takeda","doi":"10.20965/jaciii.2023.p0386","DOIUrl":null,"url":null,"abstract":"Self-attention has recently emerged as a technique for capturing non-local contexts in robot vision. This study introduced a self-attention mechanism into an intersection recognition system to capture non-local contexts behind the scenes. This mechanism is effective in intersection classification because most parts of the local pattern (e.g., road edges, buildings, and sky) are similar; thus, the use of a non-local context (e.g., the angle between two diagonal corners around an intersection) would be effective. This study makes three major contributions to existing literature. First, we proposed a self-attention-based approach for intersection classification. Second, we integrated the self-attention-based classifier into a unified intersection classification framework to improve the overall recognition performance. Finally, experiments using the public KITTI dataset showed that the proposed self-attention-based system outperforms conventional recognition based on local patterns and recognition based on convolution operations.","PeriodicalId":45921,"journal":{"name":"Journal of Advanced Computational Intelligence and Intelligent Informatics","volume":"56 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Computational Intelligence and Intelligent Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jaciii.2023.p0386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Self-attention has recently emerged as a technique for capturing non-local contexts in robot vision. This study introduced a self-attention mechanism into an intersection recognition system to capture non-local contexts behind the scenes. This mechanism is effective in intersection classification because most parts of the local pattern (e.g., road edges, buildings, and sky) are similar; thus, the use of a non-local context (e.g., the angle between two diagonal corners around an intersection) would be effective. This study makes three major contributions to existing literature. First, we proposed a self-attention-based approach for intersection classification. Second, we integrated the self-attention-based classifier into a unified intersection classification framework to improve the overall recognition performance. Finally, experiments using the public KITTI dataset showed that the proposed self-attention-based system outperforms conventional recognition based on local patterns and recognition based on convolution operations.
探索视觉交叉分类中的自注意
近年来,自注意作为一种捕捉机器人视觉中的非局部上下文的技术而出现。本研究将自注意机制引入交叉口识别系统,以捕捉幕后的非局部上下文。这种机制在交叉口分类中是有效的,因为局部模式的大部分部分(如道路边缘、建筑物和天空)是相似的;因此,使用非局部上下文(例如,交叉路口周围两个对角角之间的角度)将是有效的。本研究对现有文献有三大贡献。首先,我们提出了一种基于自注意的交叉分类方法。其次,将基于自注意的分类器整合到统一的交叉分类框架中,提高整体识别性能。最后,利用公共KITTI数据集进行的实验表明,基于自注意的系统优于传统的基于局部模式的识别和基于卷积操作的识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
14.30%
发文量
89
期刊介绍: JACIII focuses on advanced computational intelligence and intelligent informatics. The topics include, but are not limited to; Fuzzy logic, Fuzzy control, Neural Networks, GA and Evolutionary Computation, Hybrid Systems, Adaptation and Learning Systems, Distributed Intelligent Systems, Network systems, Multi-media, Human interface, Biologically inspired evolutionary systems, Artificial life, Chaos, Complex systems, Fractals, Robotics, Medical applications, Pattern recognition, Virtual reality, Wavelet analysis, Scientific applications, Industrial applications, and Artistic applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信