A Herglotz-based integrator for nonholonomic mechanical systems

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Elias Maciel, Inocencio Ortiz, Christian E. Schaerer
{"title":"A Herglotz-based integrator for nonholonomic mechanical systems","authors":"Elias Maciel, Inocencio Ortiz, Christian E. Schaerer","doi":"10.3934/jgm.2023012","DOIUrl":null,"url":null,"abstract":"<abstract><p>We propose a numerical scheme for the time-integration of nonholonomic mechanical systems, both conservative and nonconservative. The scheme is obtained by simultaneously discretizing the constraint equations and the Herglotz variational principle. We validate the method using numerical simulations and contrast them against the results of standard methods from the literature.</p></abstract>","PeriodicalId":49161,"journal":{"name":"Journal of Geometric Mechanics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometric Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/jgm.2023012","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

Abstract

We propose a numerical scheme for the time-integration of nonholonomic mechanical systems, both conservative and nonconservative. The scheme is obtained by simultaneously discretizing the constraint equations and the Herglotz variational principle. We validate the method using numerical simulations and contrast them against the results of standard methods from the literature.

基于herglotz的非完整机械系统积分器
>& gt;& gt;& gt;& gt;我们提出了一种非完整力学系统的时间积分的数值格式,包括保守和非保守。通过对约束方程的同时离散化,利用赫格罗兹变分原理得到了该格式。我们使用数值模拟验证了该方法,并将其与文献中标准方法的结果进行了对比。</p></abstract>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geometric Mechanics
Journal of Geometric Mechanics MATHEMATICS, APPLIED-PHYSICS, MATHEMATICAL
CiteScore
1.70
自引率
12.50%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Geometric Mechanics (JGM) aims to publish research articles devoted to geometric methods (in a broad sense) in mechanics and control theory, and intends to facilitate interaction between theory and applications. Advances in the following topics are welcomed by the journal: 1. Lagrangian and Hamiltonian mechanics 2. Symplectic and Poisson geometry and their applications to mechanics 3. Geometric and optimal control theory 4. Geometric and variational integration 5. Geometry of stochastic systems 6. Geometric methods in dynamical systems 7. Continuum mechanics 8. Classical field theory 9. Fluid mechanics 10. Infinite-dimensional dynamical systems 11. Quantum mechanics and quantum information theory 12. Applications in physics, technology, engineering and the biological sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信