A Digital One Health framework to integrate data for public health decision-making

Carys J. Redman-White , Kathrin Loosli , Vesa Qarkaxhija , Tim Nicholas Lee , Gerald Mboowa , Bryan A. Wee , Adrian Muwonge
{"title":"A Digital One Health framework to integrate data for public health decision-making","authors":"Carys J. Redman-White ,&nbsp;Kathrin Loosli ,&nbsp;Vesa Qarkaxhija ,&nbsp;Tim Nicholas Lee ,&nbsp;Gerald Mboowa ,&nbsp;Bryan A. Wee ,&nbsp;Adrian Muwonge","doi":"10.1016/j.ijidoh.2023.100012","DOIUrl":null,"url":null,"abstract":"<div><p>The current implementation of One Health (OH) primarily focuses on multi-sectoral collaboration but often overlooks opportunities to integrate contextual and pathogen-related data into a unified data resource. This lack of integration hampers effective, data-driven decision-making in OH activities. In this perspective, we examine the existing strategies for data sharing and identify gaps and barriers to integration. To overcome these challenges, we propose the Digital OH (DOH) framework for data integration, which consolidates data-sharing principles within five pillars for the OH community of practice: (a) Harmonization of standards to establish trust, (b) Automation of data capture to enhance quality and efficiency, (c) Integration of data at point of capture to limit bureaucracy, (d) Onboard data analysis to articulate utility, and (e) Archiving and governance to safeguard the OH data resource. We discuss an upcoming pilot program as a use case focusing on antimicrobial resistance surveillance to illustrate the application of this framework. Our ambition is to leverage technology to create data as a shared resource using DOH not only to overcome current structural barriers but also to address prevailing ethical and legal concerns. By doing so, we can enhance the efficiency and effectiveness of decision-making processes in the OH community of practice, at a national, regional, and international level.</p></div>","PeriodicalId":100655,"journal":{"name":"IJID One Health","volume":"1 ","pages":"Article 100012"},"PeriodicalIF":0.0000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949915123000112/pdfft?md5=157ae4bf25dfc0e07f9232bcb93ded9f&pid=1-s2.0-S2949915123000112-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJID One Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949915123000112","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The current implementation of One Health (OH) primarily focuses on multi-sectoral collaboration but often overlooks opportunities to integrate contextual and pathogen-related data into a unified data resource. This lack of integration hampers effective, data-driven decision-making in OH activities. In this perspective, we examine the existing strategies for data sharing and identify gaps and barriers to integration. To overcome these challenges, we propose the Digital OH (DOH) framework for data integration, which consolidates data-sharing principles within five pillars for the OH community of practice: (a) Harmonization of standards to establish trust, (b) Automation of data capture to enhance quality and efficiency, (c) Integration of data at point of capture to limit bureaucracy, (d) Onboard data analysis to articulate utility, and (e) Archiving and governance to safeguard the OH data resource. We discuss an upcoming pilot program as a use case focusing on antimicrobial resistance surveillance to illustrate the application of this framework. Our ambition is to leverage technology to create data as a shared resource using DOH not only to overcome current structural barriers but also to address prevailing ethical and legal concerns. By doing so, we can enhance the efficiency and effectiveness of decision-making processes in the OH community of practice, at a national, regional, and international level.

数字一体健康框架,为公共卫生决策整合数据
目前实施的 "一个健康"(OH)主要侧重于多部门合作,但往往忽视了将背景数据和病原体相关数据整合到统一数据资源中的机会。这种整合的缺失阻碍了 "同一健康 "活动中以数据为导向的有效决策。在这一视角中,我们研究了现有的数据共享战略,并确定了整合方面的差距和障碍。为了克服这些挑战,我们提出了数字 OH (DOH) 数据整合框架,该框架将数据共享原则整合为 OH 实践社区的五大支柱:(a) 统一标准以建立信任;(b) 数据采集自动化以提高质量和效率;(c) 在采集点整合数据以限制官僚主义;(d) 机载数据分析以阐明效用;(e) 存档和管理以保护 OH 数据资源。我们将讨论一个即将开展的试点项目,以抗菌药耐药性监测为使用案例,说明该框架的应用。我们的目标是利用技术创建数据,作为使用卫生部的共享资源,不仅要克服当前的结构性障碍,还要解决普遍存在的伦理和法律问题。通过这样做,我们可以在国家、地区和国际层面提高卫生组织实践社区决策过程的效率和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信