Thermal properties and Life Cycle Assessment of new eco-sandwich panel for building thermal insulation

IF 1.8 4区 工程技术 Q3 CONSTRUCTION & BUILDING TECHNOLOGY
Hafida Er-rradi, Mohamed Oualid Mghazli, Abdelilah Jilbab, Chakib Bojji, Rachida Idchabani
{"title":"Thermal properties and Life Cycle Assessment of new eco-sandwich panel for building thermal insulation","authors":"Hafida Er-rradi, Mohamed Oualid Mghazli, Abdelilah Jilbab, Chakib Bojji, Rachida Idchabani","doi":"10.1177/17442591231208360","DOIUrl":null,"url":null,"abstract":"Lightweight eco-materials are in high demand in many sectors, such as aerospace, industry, and building due to their several characteristics. The present paper is an experimental investigation of the thermal characteristics of novel sandwich panels made with local and ecological materials namely agglomerated cork for the core and bio-composite materials for the skin. Three configurations (symmetric, asymmetric, and two layers) were studied with different cork core thicknesses. Density values have been measured and compared. Thermal characterization consists of determining thermal conductivity and specific heat using a HFM apparatus; whilst thermal diffusivity and thermal effusivity have been calculated using the experimental findings. The panels are lightweight and thermally insulating. The values of thermal conductivity are in the range 0.071 and 0.102 W.m−1.K−1. The comparison between experimental results of thermal conductivity to theoretical values highlights the accuracy of method for multi-layer thermal characterization and the good adhesion between layers. Finally, a life cycle assessment of the new sandwich panels has been carried out and compared with common insulation materials. The sandwich panels are efficient in terms of embodied energy and CO2 emissions compared to commercialized insulators and some insulators based on recycled or natural materials, the embodied energy for symmetric configuration with 4 cm cork core are 79.73, 94.75, and 89.35 MJ/FU corresponding to an embodied carbon 5.33, 6.32, and 6.01 CO2/FU respectively. They can be classified in the middle between synthetic and natural insulators. Based on the findings, it was concluded that utilizing these sandwich panels as construction materials for interior paneling or partition walls could offer benefits in terms of being environmentally sustainable and cost-efficient.","PeriodicalId":50249,"journal":{"name":"Journal of Building Physics","volume":"94 12","pages":"332 - 352"},"PeriodicalIF":1.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Building Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/17442591231208360","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lightweight eco-materials are in high demand in many sectors, such as aerospace, industry, and building due to their several characteristics. The present paper is an experimental investigation of the thermal characteristics of novel sandwich panels made with local and ecological materials namely agglomerated cork for the core and bio-composite materials for the skin. Three configurations (symmetric, asymmetric, and two layers) were studied with different cork core thicknesses. Density values have been measured and compared. Thermal characterization consists of determining thermal conductivity and specific heat using a HFM apparatus; whilst thermal diffusivity and thermal effusivity have been calculated using the experimental findings. The panels are lightweight and thermally insulating. The values of thermal conductivity are in the range 0.071 and 0.102 W.m−1.K−1. The comparison between experimental results of thermal conductivity to theoretical values highlights the accuracy of method for multi-layer thermal characterization and the good adhesion between layers. Finally, a life cycle assessment of the new sandwich panels has been carried out and compared with common insulation materials. The sandwich panels are efficient in terms of embodied energy and CO2 emissions compared to commercialized insulators and some insulators based on recycled or natural materials, the embodied energy for symmetric configuration with 4 cm cork core are 79.73, 94.75, and 89.35 MJ/FU corresponding to an embodied carbon 5.33, 6.32, and 6.01 CO2/FU respectively. They can be classified in the middle between synthetic and natural insulators. Based on the findings, it was concluded that utilizing these sandwich panels as construction materials for interior paneling or partition walls could offer benefits in terms of being environmentally sustainable and cost-efficient.
新型建筑隔热生态夹芯板的热性能及生命周期评价
轻质生态材料由于其多种特性,在航空航天、工业和建筑等许多领域都有很高的需求。本论文是一项实验研究的新型夹层板的热特性与当地和生态材料,即凝聚软木为核心和生物复合材料为皮肤。研究了不同软木芯厚度的三种结构(对称、不对称和两层)。测量和比较了密度值。热表征包括使用HFM仪器测定导热系数和比热;同时利用实验结果计算了热扩散率和热渗出率。面板重量轻,隔热。导热系数在0.071 ~ 0.102 W.m−1 . k−1之间。热导率的实验结果与理论值的比较表明了多层热表征方法的准确性和层间良好的粘附性。最后,对新型夹层板进行了寿命周期评估,并与普通保温材料进行了比较。与商用绝缘子和部分再生材料或天然材料的绝缘子相比,夹层板的蕴含能和CO 2排放效率更高,4 cm软木芯对称配置的蕴含能分别为79.73、94.75和89.35 MJ/FU,蕴含碳分别为5.33、6.32和6.01 CO 2 /FU。它们可以被归类在合成绝缘体和天然绝缘体之间。根据研究结果,我们得出结论,利用这些夹层板作为室内墙板或隔墙的建筑材料,在环境可持续和成本效益方面可以提供好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Building Physics
Journal of Building Physics 工程技术-结构与建筑技术
CiteScore
5.10
自引率
15.00%
发文量
10
审稿时长
5.3 months
期刊介绍: Journal of Building Physics (J. Bldg. Phys) is an international, peer-reviewed journal that publishes a high quality research and state of the art “integrated” papers to promote scientifically thorough advancement of all the areas of non-structural performance of a building and particularly in heat, air, moisture transfer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信