Phase engineering of Pd–Te nanoplates via potential energy trapping

IF 42.9 Q1 ELECTROCHEMISTRY
Mengjun Wang , Jun Jia , Hao Yan , Guang Li , Qiming Hong , Yuzheng Guo , Yong Xu , Xiaoqing Huang
{"title":"Phase engineering of Pd–Te nanoplates via potential energy trapping","authors":"Mengjun Wang ,&nbsp;Jun Jia ,&nbsp;Hao Yan ,&nbsp;Guang Li ,&nbsp;Qiming Hong ,&nbsp;Yuzheng Guo ,&nbsp;Yong Xu ,&nbsp;Xiaoqing Huang","doi":"10.1016/j.esci.2023.100209","DOIUrl":null,"url":null,"abstract":"<div><p>Phase modulation of noble metal alloys (NMAs) is critically important in nanoscience since the distinct atomic arrangements can largely determine their physicochemical properties. However, the precise modulation of NMAs is formidably challenging, because thermodynamically stable phases are generally preferential compared to those metastable ones. Herein, we proposed a potential energy trapping strategy for phase modulation of Pd–Te alloys with solvents. Thereinto, ethylene glycol can increase the energy barrier for both Pd leaching and Te introduction, forming metastable Pd<sub>20</sub>Te<sub>7</sub> phase. Inversely, N, N-dimethylformamide is unable to trap metastable phase, inducing the phase evolution to thermodynamically stable PdTe phase, and the precise phase modulation was realized including Pd<sub>20</sub>Te<sub>7</sub>, PdTe and PdTe<sub>2</sub> phases. The Pd–Te alloys displayed phase-dependent formic acid oxidation catalytic performance with PdTe phase showing the best. This work proposes a strategy for creating metastable phase with potential energy trap, which may deepen the understanding of phase engineering for noble metal-based nanocrystals.</p></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"4 2","pages":"Article 100209"},"PeriodicalIF":42.9000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667141723001556/pdfft?md5=34aee37357daca6bebf346fe5ec9f4b7&pid=1-s2.0-S2667141723001556-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141723001556","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Phase modulation of noble metal alloys (NMAs) is critically important in nanoscience since the distinct atomic arrangements can largely determine their physicochemical properties. However, the precise modulation of NMAs is formidably challenging, because thermodynamically stable phases are generally preferential compared to those metastable ones. Herein, we proposed a potential energy trapping strategy for phase modulation of Pd–Te alloys with solvents. Thereinto, ethylene glycol can increase the energy barrier for both Pd leaching and Te introduction, forming metastable Pd20Te7 phase. Inversely, N, N-dimethylformamide is unable to trap metastable phase, inducing the phase evolution to thermodynamically stable PdTe phase, and the precise phase modulation was realized including Pd20Te7, PdTe and PdTe2 phases. The Pd–Te alloys displayed phase-dependent formic acid oxidation catalytic performance with PdTe phase showing the best. This work proposes a strategy for creating metastable phase with potential energy trap, which may deepen the understanding of phase engineering for noble metal-based nanocrystals.

Abstract Image

Abstract Image

通过势能捕获实现 Pd-Te 纳米板的相工程
贵金属合金(NMAs)的相调制在纳米科学中至关重要,因为不同的原子排列在很大程度上决定了它们的物理化学特性。然而,由于热力学上稳定的相通常优于可稳定的相,因此对 NMAs 进行精确调制极具挑战性。在此,我们提出了一种利用溶剂对钯碲合金进行相调节的潜在能量捕获策略。其中,乙二醇可增加钯浸出和碲引入的能垒,形成铂碲合金的 "陨落 "相 Pd20Te7。相反,N, N-二甲基甲酰胺无法捕获逸散相,从而诱导相演化为热力学稳定的 PdTe 相,并实现了包括 Pd20Te7、PdTe 和 PdTe2 相在内的精确相调制。Pd-Te 合金显示出与相有关的甲酸氧化催化性能,其中 PdTe 相的性能最佳。这项工作提出了一种利用势能陷阱创建可转移相的策略,可加深对贵金属基纳米晶体相工程的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信