{"title":"Bond-Slip Model of Corrosion-Resistant Rebar and Fiber-Reinforced Seawater Sea-Sand Concrete","authors":"Hao Zheng, Wei Wang, Chengqiang Gao, Jian Yuan, Jiang Feng","doi":"10.1520/jte20230256","DOIUrl":null,"url":null,"abstract":"To study the bond performance between fiber-reinforced seawater sea-sand concrete and corrosion-resistant rebars (glass fiber–reinforced polymer [GFRP] bars and epoxy resin–coated rebars) in extremely hot and humid marine environments, bond anchorage tests between reinforcement and seawater sea-sand concrete are conducted to study bond performance. The failure morphology of reinforced concrete was investigated, and the bond-slip curves of different types of rebar and concrete were compared. According to the research results, the addition of basalt and polypropylene fibers to seawater sea-sand concrete changed the distribution of bonding stress, which was conducive to an improvement in the anchorage efficiency of reinforcement and concrete. The chemical bonding performance between the fiber-reinforced seawater sea-sand concrete and rebar is improved, wherein the bond stress increases by 94.01 % at the beginning of the slip, and the residual bond stress increases by 91.72 %. Compared with ordinary seawater sea-sand concrete, the bonding strength between ordinary reinforced rebar and fiber-reinforced seawater sea-sand concrete increased by 20.75 %, and the bonding strength between the GFRP bar and fiber-reinforced concrete decreased by 15.37 %. Based on the friction mechanism of rebars and concrete, bonding strength models of ordinary rebar, epoxy resin–coated rebar, and GFRP bars with fiber-reinforced seawater sea-sand concrete are presented.","PeriodicalId":17109,"journal":{"name":"Journal of Testing and Evaluation","volume":"6 2","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Testing and Evaluation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1520/jte20230256","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
To study the bond performance between fiber-reinforced seawater sea-sand concrete and corrosion-resistant rebars (glass fiber–reinforced polymer [GFRP] bars and epoxy resin–coated rebars) in extremely hot and humid marine environments, bond anchorage tests between reinforcement and seawater sea-sand concrete are conducted to study bond performance. The failure morphology of reinforced concrete was investigated, and the bond-slip curves of different types of rebar and concrete were compared. According to the research results, the addition of basalt and polypropylene fibers to seawater sea-sand concrete changed the distribution of bonding stress, which was conducive to an improvement in the anchorage efficiency of reinforcement and concrete. The chemical bonding performance between the fiber-reinforced seawater sea-sand concrete and rebar is improved, wherein the bond stress increases by 94.01 % at the beginning of the slip, and the residual bond stress increases by 91.72 %. Compared with ordinary seawater sea-sand concrete, the bonding strength between ordinary reinforced rebar and fiber-reinforced seawater sea-sand concrete increased by 20.75 %, and the bonding strength between the GFRP bar and fiber-reinforced concrete decreased by 15.37 %. Based on the friction mechanism of rebars and concrete, bonding strength models of ordinary rebar, epoxy resin–coated rebar, and GFRP bars with fiber-reinforced seawater sea-sand concrete are presented.
期刊介绍:
This journal is published in six issues per year. Some issues, in whole or in part, may be Special Issues focused on a topic of interest to our readers.
This flagship ASTM journal is a multi-disciplinary forum for the applied sciences and engineering. Published bimonthly, the Journal of Testing and Evaluation presents new technical information, derived from field and laboratory testing, on the performance, quantitative characterization, and evaluation of materials. Papers present new methods and data along with critical evaluations; report users'' experience with test methods and results of interlaboratory testing and analysis; and stimulate new ideas in the fields of testing and evaluation.
Major topic areas are fatigue and fracture, mechanical testing, and fire testing. Also publishes review articles, technical notes, research briefs and commentary.