Ninth Variation of Classical Group Characters of Type A-D and Littlewood Identities

IF 0.7 4区 数学 Q2 MATHEMATICS
Mikhail Goltsblat
{"title":"Ninth Variation of Classical Group Characters of Type A-D and Littlewood Identities","authors":"Mikhail Goltsblat","doi":"10.37236/11768","DOIUrl":null,"url":null,"abstract":"We introduce certain generalisations of the characters of the classical Lie groups, extending the recently defined factorial characters of Foley and King. In this extension, the factorial powers are replaced with an arbitrary sequence of polynomials, as in Sergeev–Veselov's generalised Schur functions and Okada's generalised Schur P- and Q-functions. We also offer a similar generalisation for the rational Schur functions. We derive Littlewood-type identities for our generalisations. These identities allow us to give new (unflagged) Jacobi–Trudi identities for the Foley–King factorial characters and for rational versions of the factorial Schur functions. We also propose an extension of the original Macdonald's ninth variation of Schur functions to the case of symplectic and orthogonal characters, which helps us prove Nägelsbach–Kostka identities.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"20 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37236/11768","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce certain generalisations of the characters of the classical Lie groups, extending the recently defined factorial characters of Foley and King. In this extension, the factorial powers are replaced with an arbitrary sequence of polynomials, as in Sergeev–Veselov's generalised Schur functions and Okada's generalised Schur P- and Q-functions. We also offer a similar generalisation for the rational Schur functions. We derive Littlewood-type identities for our generalisations. These identities allow us to give new (unflagged) Jacobi–Trudi identities for the Foley–King factorial characters and for rational versions of the factorial Schur functions. We also propose an extension of the original Macdonald's ninth variation of Schur functions to the case of symplectic and orthogonal characters, which helps us prove Nägelsbach–Kostka identities.
A-D型和Littlewood型经典群性状的第九次变异
我们引入了经典李群特征的某些推广,扩展了最近定义的Foley和King的阶乘特征。在这个扩展中,阶乘幂被替换为多项式的任意序列,如Sergeev-Veselov的广义舒尔函数和Okada的广义舒尔P-和q -函数。我们也为有理舒尔函数提供了类似的推广。我们推导出利特尔伍德型恒等式。这些恒等式允许我们为Foley-King阶乘字符和阶乘Schur函数的有理版本提供新的(未标记的)Jacobi-Trudi恒等式。我们还提出了将原Macdonald的第九种Schur函数的变分推广到辛和正交特征的情况,这有助于我们证明Nägelsbach-Kostka恒等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信