Dengyun Nie, Ting Guo, Xinyu Zong, Wenya Li, Yinxing Zhu, Miao Yue, Min Sha, Mei Lin
{"title":"Induction of ferroptosis by artesunate nanoparticles is an effective therapeutic strategy for hepatocellular carcinoma","authors":"Dengyun Nie, Ting Guo, Xinyu Zong, Wenya Li, Yinxing Zhu, Miao Yue, Min Sha, Mei Lin","doi":"10.1186/s12645-023-00232-4","DOIUrl":null,"url":null,"abstract":"Abstract Artesunate (ART) has great value in the field of tumor therapy. Interestingly, in this study, we found that ART could obviously induce ferroptosis in hepatocellular carcinoma (HCC) cells, but its low water solubility and bioavailability limited its application potential. Hence, we synthesized ART-loaded mesoporous silica nanoparticles (MSNs) conjugated with folic acid (FA) (MSN-ART-FA) with tumor-targeting performance and assessed their characteristics. We evaluated the ability of MSN-ART and MSN-ART-FA to induce ferroptosis of hepatoma cells via testing levels of reactive oxygen species (ROS), Fe 2+ , malondialdehyde (MDA) and glutathione (GSH), observation of mitochondrial morphology, as well as the expression of key proteins in ferroptosis. The results showed that prepared MSN-ART and MSN-ART-FA could remarkedly improve the bioavailability of ART to enhance ferroptosis, thereby inhibiting cell proliferation, migration and invasion in vitro. Besides, MSN-ART-FA group displayed slower tumor growth and smaller tumor volumes than MSN-ART group in HepG2 xenograft mouse model. It provided a potential therapeutic option for HCC and expanded the horizon for the clinical treatment of other cancers. Graphical Abstract","PeriodicalId":9408,"journal":{"name":"Cancer Nanotechnology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12645-023-00232-4","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Artesunate (ART) has great value in the field of tumor therapy. Interestingly, in this study, we found that ART could obviously induce ferroptosis in hepatocellular carcinoma (HCC) cells, but its low water solubility and bioavailability limited its application potential. Hence, we synthesized ART-loaded mesoporous silica nanoparticles (MSNs) conjugated with folic acid (FA) (MSN-ART-FA) with tumor-targeting performance and assessed their characteristics. We evaluated the ability of MSN-ART and MSN-ART-FA to induce ferroptosis of hepatoma cells via testing levels of reactive oxygen species (ROS), Fe 2+ , malondialdehyde (MDA) and glutathione (GSH), observation of mitochondrial morphology, as well as the expression of key proteins in ferroptosis. The results showed that prepared MSN-ART and MSN-ART-FA could remarkedly improve the bioavailability of ART to enhance ferroptosis, thereby inhibiting cell proliferation, migration and invasion in vitro. Besides, MSN-ART-FA group displayed slower tumor growth and smaller tumor volumes than MSN-ART group in HepG2 xenograft mouse model. It provided a potential therapeutic option for HCC and expanded the horizon for the clinical treatment of other cancers. Graphical Abstract
Cancer NanotechnologyPharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
5.20
自引率
1.80%
发文量
37
审稿时长
15 weeks
期刊介绍:
Aim:
Recognizing cancer as a group of diseases caused by nanostructural problems (i.e. with DNA) and also that there are unique benefits to approaches inherently involving nanoscale structures and processes to treat the disease, the journal Cancer Nanotechnology aims to disseminate cutting edge research; to promote emerging trends in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis, treatment of cancer; and to cover related ancillary areas.
Scope:
Articles describing original research in the use of nanostructures and the induction of nanoscale processes for the prevention, diagnosis and treatment of cancer (open submission process). Review, editorial and tutorial articles picking up on subthemes of emerging importance where nanostructures and the induction of nanoscale processes are used for the prevention, diagnosis and treatment of cancer.