Overdetermined elliptic problems in nontrivial contractible domains of the sphere

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
David Ruiz , Pieralberto Sicbaldi , Jing Wu
{"title":"Overdetermined elliptic problems in nontrivial contractible domains of the sphere","authors":"David Ruiz ,&nbsp;Pieralberto Sicbaldi ,&nbsp;Jing Wu","doi":"10.1016/j.matpur.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the existence of nontrivial contractible domains <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that the overdetermined elliptic problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>ε</mi><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><mn>0</mn></mtd><mtd><mtext>in Ω, </mtext></mtd></mtr><mtr><mtd><mi>u</mi><mo>&gt;</mo><mn>0</mn></mtd><mtd><mtext>in Ω, </mtext></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>on ∂Ω, </mtext></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>ν</mi></mrow></msub><mi>u</mi><mo>=</mo><mtext>constant</mtext></mtd><mtd><mtext>on ∂Ω, </mtext></mtd></mtr></mtable></mrow></math></span></span></span> admits a positive solution. Here <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is the Laplace-Beltrami operator in the unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with respect to the canonical round metric <em>g</em>, <span><math><mi>ε</mi><mo>&gt;</mo><mn>0</mn></math></span> is a small real parameter and <span><math><mn>1</mn><mo>&lt;</mo><mi>p</mi><mo>&lt;</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> (<span><math><mi>p</mi><mo>&gt;</mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). These domains are perturbations of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>∖</mo><mi>D</mi></math></span>, where <em>D</em><span><span> is a small geodesic ball. This shows in particular that Serrin's theorem for </span>overdetermined problems<span> in the Euclidean space cannot be generalized to the sphere even for contractible domains.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we prove the existence of nontrivial contractible domains ΩSd, d2, such that the overdetermined elliptic problem{εΔgu+uup=0in Ω, u>0in Ω, u=0on ∂Ω, νu=constanton ∂Ω,  admits a positive solution. Here Δg is the Laplace-Beltrami operator in the unit sphere Sd with respect to the canonical round metric g, ε>0 is a small real parameter and 1<p<d+2d2 (p>1 if d=2). These domains are perturbations of SdD, where D is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains.

球面非平凡可缩区域上的超定椭圆问题
在本文中,我们证明了非平凡可缩域Ω∧Sd, d≥2的存在性,使得超定椭圆问题{−εΔgu+u−up=0in Ω, u>0in Ω, u=0on∂Ω,∂νu=constanton∂Ω有一个正解。这里Δg是单位球Sd中关于正则圆度规g的拉普拉斯-贝尔特拉米算子,ε>0是一个小实参数,1<p<d+2d - 2(如果d=2, p>1)。这些区域是Sd²D的摄动,其中D是一个小的测地线球。这特别说明了欧氏空间中关于超定问题的Serrin定理不能推广到球面上,即使在可缩域上也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信