{"title":"Overdetermined elliptic problems in nontrivial contractible domains of the sphere","authors":"David Ruiz , Pieralberto Sicbaldi , Jing Wu","doi":"10.1016/j.matpur.2023.10.009","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we prove the existence of nontrivial contractible domains <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span>, <span><math><mi>d</mi><mo>≥</mo><mn>2</mn></math></span>, such that the overdetermined elliptic problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><mi>ε</mi><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub><mi>u</mi><mo>+</mo><mi>u</mi><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mi>p</mi></mrow></msup><mo>=</mo><mn>0</mn></mtd><mtd><mtext>in Ω, </mtext></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn></mtd><mtd><mtext>in Ω, </mtext></mtd></mtr><mtr><mtd><mi>u</mi><mo>=</mo><mn>0</mn></mtd><mtd><mtext>on ∂Ω, </mtext></mtd></mtr><mtr><mtd><msub><mrow><mo>∂</mo></mrow><mrow><mi>ν</mi></mrow></msub><mi>u</mi><mo>=</mo><mtext>constant</mtext></mtd><mtd><mtext>on ∂Ω, </mtext></mtd></mtr></mtable></mrow></math></span></span></span> admits a positive solution. Here <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span> is the Laplace-Beltrami operator in the unit sphere <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> with respect to the canonical round metric <em>g</em>, <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> is a small real parameter and <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mfrac><mrow><mi>d</mi><mo>+</mo><mn>2</mn></mrow><mrow><mi>d</mi><mo>−</mo><mn>2</mn></mrow></mfrac></math></span> (<span><math><mi>p</mi><mo>></mo><mn>1</mn></math></span> if <span><math><mi>d</mi><mo>=</mo><mn>2</mn></math></span>). These domains are perturbations of <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>∖</mo><mi>D</mi></math></span>, where <em>D</em><span><span> is a small geodesic ball. This shows in particular that Serrin's theorem for </span>overdetermined problems<span> in the Euclidean space cannot be generalized to the sphere even for contractible domains.</span></span></p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021782423001502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we prove the existence of nontrivial contractible domains , , such that the overdetermined elliptic problem admits a positive solution. Here is the Laplace-Beltrami operator in the unit sphere with respect to the canonical round metric g, is a small real parameter and ( if ). These domains are perturbations of , where D is a small geodesic ball. This shows in particular that Serrin's theorem for overdetermined problems in the Euclidean space cannot be generalized to the sphere even for contractible domains.