An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm

Rezvan Motavallian, Masoud Komeily
{"title":"An intelligent extension of the training set for the Persian n-gram language model: an enrichment algorithm","authors":"Rezvan Motavallian, Masoud Komeily","doi":"10.7764/onomazein.61.09","DOIUrl":null,"url":null,"abstract":"In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.","PeriodicalId":500248,"journal":{"name":"Onomázein Revista de lingüística filología y traducción","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Onomázein Revista de lingüística filología y traducción","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7764/onomazein.61.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we are going to introduce an automatic mechanism to intelligently extend the training set to improve the n-gram language model of Persian. Given the free word-order property in Persian, our enrichment algorithm diversifies n-gram combinations in baseline training data through dependency reordering, adding permissible sentences and filtering ungrammatical sentences using a hybrid empirical (heuristic) and linguistic approach. Experiments performed on baseline training set (taken from a standard Persian corpus) and the resulting enriched training set indicate a declining trend in average relative perplexity (between 34% to 73%) for informal/spoken vs. formal/written Persian test data.
波斯语n-gram语言模型训练集的智能扩展:一种浓缩算法
在本文中,我们将引入一种自动机制来智能地扩展训练集,以改进波斯语的n-gram语言模型。考虑到波斯语的自由词序特性,我们的丰富算法通过依赖关系重新排序、添加允许的句子和使用混合经验(启发式)和语言方法过滤不符合语法的句子,使基线训练数据中的n-gram组合多样化。在基线训练集(取自标准波斯语语料库)和由此产生的丰富训练集上进行的实验表明,非正式/口语与正式/书面波斯语测试数据的平均相对困惑度呈下降趋势(在34%至73%之间)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信