{"title":"Scheduling-Based Transmit Signal Shaping in Energy-Constrained Molecular Communications","authors":"Mustafa Can Gursoy;Urbashi Mitra","doi":"10.1109/TMBMC.2023.3329801","DOIUrl":null,"url":null,"abstract":"Diffusion-based molecular communications (DBMC) systems rely on diffusive propagation of molecules to convey information. In a DBMC system, as each emitted molecule experiences a stochastic delay, pulse shaping is crucial for a DBMC system’s reliability and overall performance. To this end, acknowledging the inherent resource-limited nature of a DBMC system, a novel framework to model and optimize a DBMC transmitter is introduced in this paper. Leveraging tools from wireless packet scheduling theory, the DBMC pulse shaping problem is formulated as an energy-constrained resource allocation problem. Through the developed framework, it is shown that the provably optimal pulse shape that minimizes the error probability is the delayed-spike pulse, where the incurred delay is a decreasing function of the available energy budget. The framework is then extended to both absorbing and passive/observing receiver structures, as well as systems where molecules can degrade in the transmitter body prior to release. Numerical results corroborate the developed analysis, and show that the delayed-spike outperforms conventional, non-zero-width pulse shapes in terms of error performance.","PeriodicalId":36530,"journal":{"name":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Molecular, Biological, and Multi-Scale Communications","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10312770/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Diffusion-based molecular communications (DBMC) systems rely on diffusive propagation of molecules to convey information. In a DBMC system, as each emitted molecule experiences a stochastic delay, pulse shaping is crucial for a DBMC system’s reliability and overall performance. To this end, acknowledging the inherent resource-limited nature of a DBMC system, a novel framework to model and optimize a DBMC transmitter is introduced in this paper. Leveraging tools from wireless packet scheduling theory, the DBMC pulse shaping problem is formulated as an energy-constrained resource allocation problem. Through the developed framework, it is shown that the provably optimal pulse shape that minimizes the error probability is the delayed-spike pulse, where the incurred delay is a decreasing function of the available energy budget. The framework is then extended to both absorbing and passive/observing receiver structures, as well as systems where molecules can degrade in the transmitter body prior to release. Numerical results corroborate the developed analysis, and show that the delayed-spike outperforms conventional, non-zero-width pulse shapes in terms of error performance.
期刊介绍:
As a result of recent advances in MEMS/NEMS and systems biology, as well as the emergence of synthetic bacteria and lab/process-on-a-chip techniques, it is now possible to design chemical “circuits”, custom organisms, micro/nanoscale swarms of devices, and a host of other new systems. This success opens up a new frontier for interdisciplinary communications techniques using chemistry, biology, and other principles that have not been considered in the communications literature. The IEEE Transactions on Molecular, Biological, and Multi-Scale Communications (T-MBMSC) is devoted to the principles, design, and analysis of communication systems that use physics beyond classical electromagnetism. This includes molecular, quantum, and other physical, chemical and biological techniques; as well as new communication techniques at small scales or across multiple scales (e.g., nano to micro to macro; note that strictly nanoscale systems, 1-100 nm, are outside the scope of this journal). Original research articles on one or more of the following topics are within scope: mathematical modeling, information/communication and network theoretic analysis, standardization and industrial applications, and analytical or experimental studies on communication processes or networks in biology. Contributions on related topics may also be considered for publication. Contributions from researchers outside the IEEE’s typical audience are encouraged.